Skip to main content
Log in

Hematocrit to hemoglobin ratio as a prognostic marker in polycythemia vera

  • original article
  • Published:
Wiener klinische Wochenschrift Aims and scope Submit manuscript

Summary

Background

The hematocrit to hemoglobin ratio (HHR) is frequently used in everyday practice to measure hemoconcentration; however, clinical associations of HHR in the context of polycythemia vera (PV) have not been investigated so far.

Patients and methods

We retrospectively assessed HHR at the time of diagnosis in 107 PV and 40 secondary polycythemia (SP) patients from three community hospitals.

Results

Median HHR was higher in PV than in SP patients (3.131 vs. 2.975, p = 0.041). Among PV patients, higher HHR correlated with splenomegaly, higher total leukocyte and absolute granulocyte counts, higher red blood cell counts, lower hemoglobin, higher red blood cell distribution width, lower mean corpuscular hemoglobin and lower ferritin levels, whereas in SP patients higher HHR correlated with older age, female sex and lower hemoglobin (p < 0.050 for all analyses). Using the receiver operating curve analysis-defined cut-off points, higher HHR in PV was associated with a shorter time to thrombosis (hazard ratio—HR 5.20, p = 0.022) independently of high-risk disease status (HR 4.48, p = 0.034) and shorter overall survival (HR 6.69, p = 0.009) independently of leukocytosis (HR 4.48, P = 0.034) and the absence of aspirin use (HR 15.53, p < 0.001).

Conclusion

Higher HHR may represent iron deficiency and a stronger clonal myeloproliferation in PV and could provide additional prognostic information to the classical risk assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wouters HJCM, Mulder R, van Zeventer IA, Schuringa JJ, van der Klauw MM, van der Harst P, et al. Erythrocytosis in the general population: clinical characteristics and association with clonal hematopoiesis. Blood Adv. 2020;4(24):6353–63.

    Article  CAS  Google Scholar 

  2. Nguyen E, Harnois M, Busque L, Sirhan S, Assouline S, Chamaki I, et al. Phenotypical differences and thrombosis rates in secondary erythrocytosis versus polycythemia vera. Blood Cancer J. 2021;11(4):75.

    Article  Google Scholar 

  3. Holik H, Krečak I, Gverić-Krečak V, Vučinić Ljubičić I, Coha B. Higher red blood cell distribution width might differentiate primary from secondary polycythemia: a pilot study. Int J Lab Hematol. 2021;43(2):e68–e71.

    Article  Google Scholar 

  4. Bhatt VR. Secondary polycythemia and the risk of venous thromboembolism. J Clin Med Res. 2014;6(5):395–7.

    PubMed  PubMed Central  Google Scholar 

  5. Barbui T, Thiele J, Gisslinger H, Finazzi G, Carobbio A, Rumi E, et al. Masked polycythemia vera (mPV): results of an international study. Am J Hematol. 2014;89(1):52–4.

    Article  CAS  Google Scholar 

  6. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–405.

    Article  CAS  Google Scholar 

  7. Busque L, Porwit A, Day R, Olney HJ, Leber B, Éthier V, et al. Laboratory investigation of myeloproliferative neoplasms (MPNs): recommendations of the Canadian MPN group. Am J Clin Pathol. 2016;146(4):408–22.

    Article  CAS  Google Scholar 

  8. McMullin MF, Harrison CN, Ali S, Cargo C, Chen F, Ewing J, et al. A guideline for the diagnosis and management of polycythaemia vera. A British Society for Haematology guideline. Br J Haematol. 2019;184(2):176–91.

    Article  Google Scholar 

  9. Marchioli R, Finazzi G, Specchia G, Cacciola R, Cavazzina R, Cilloni D, et al. Cardiovascular events and intensity of treatment in polycythemia vera. N Engl J Med. 2013;368(1):22–33.

    Article  CAS  Google Scholar 

  10. Landolfi R, Marchioli R, Kutti J, Gisslinger H, Tognoni G, Patrono C, et al. Efficacy and safety of low-dose aspirin in polycythemia vera. N Engl J Med. 2004;350(2):114–24.

    Article  CAS  Google Scholar 

  11. Landolfi R, Di Gennaro L, Barbui T, De Stefano V, Finazzi G, Marfisi R, et al. Leukocytosis as a major thrombotic risk factor in patients with polycythemia vera. Blood. 2007;109(6):2446–52.

    Article  CAS  Google Scholar 

  12. Carobbio A, Ferrari A, Masciulli A, Ghirardi A, Barosi G, Barbui T. Leukocytosis and thrombosis in essential thrombocythemia and polycythemia vera: a systematic review and meta-analysis. Blood Adv. 2019;3(11):1729–37.

    Article  Google Scholar 

  13. Ronner L, Podoltsev N, Gotlib J, Heaney ML, Kuykendall AT, O’Connell C, et al. Persistent leukocytosis in polycythemia vera is associated with disease evolution but not thrombosis. Blood. 2020;135(19):1696–703.

    Article  CAS  Google Scholar 

  14. Hayuanta HH. Can hemoglobin-hematocrit relationship be used to assess hydration status? Cermin Dunia Kedokteran. 2016;43:139–42.

    Google Scholar 

  15. Quintó L, Aponte JJ, Menéndez C, Sacarlal J, Aide P, Espasa M, et al. Relationship between haemoglobin and haematocrit in the definition of anaemia. Trop Med Int Health. 2006;11(8):1295–302.

    Article  Google Scholar 

  16. Insiripong S, Supattarobol T, Jetsrisuparb A. Comparison of hematocrit/hemoglobin ratios in subjects with alpha-thalassemia, with subjects having chronic kidney disease and normal subjects. Southeast Asian J Trop Med Public Health. 2013;44(4):707–11.

    PubMed  Google Scholar 

  17. Verstovsek S, Harrison CN, Kiladjian JJ, Miller C, Naim AB, Paranagama DC, et al. Markers of iron deficiency in patients with polycythemia vera receiving ruxolitinib or best available therapy. Leuk Res. 2017;56:52–9.

    Article  CAS  Google Scholar 

  18. Ginzburg YZ, Feola M, Zimran E, Varkonyi J, Ganz T, Hoffman R. Dysregulated iron metabolism in polycythemia vera: etiology and consequences. Leukemia. 2018;32(10):2105–16.

    Article  CAS  Google Scholar 

  19. Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. 2005;365(9464):1054–61.

    Article  CAS  Google Scholar 

  20. Kellner Á, Kellner V, Rajnics P, Karádi É, Illés Á, Demeter J, et al. Low mean cell haemoglobin is a valuable parameter of thrombotic risk stratification in patients with polycythemia vera. J Blood Lymph. 2018;8:1.

    Article  Google Scholar 

  21. Spivak JL. Polycythemia vera: myths, mechanisms, and management. Blood. 2002;100(13):4272–90.

    Article  CAS  Google Scholar 

  22. Sirhan S, Fairbanks VF, Tefferi A. Red cell mass and plasma volume measurements in polycythemia: evaluation of performance and practical utility. Cancer. 2005;104(1):213–5.

    Article  Google Scholar 

  23. Accurso V, Santoro M, Raso S, Contrino AD, Casimiro P, Piazza FD, et al. Splenomegaly impacts prognosis in essential thrombocythemia and polycythemia vera: a single center study. Hematol Rep. 2019;11(4):8281.

    Article  Google Scholar 

  24. Zöller B, Melander O, Svensson P, Engström G. Red cell distribution width and risk for venous thromboembolism: a population-based cohort study. Thromb Res. 2014;133(3):334–9.

    Article  Google Scholar 

  25. Bucciarelli P, Maino A, Felicetta I, Abbattista M, Passamonti SM, Artoni A, et al. Association between red cell distribution width and risk of venous thromboembolism. Thromb Res. 2015;136(3):590–4.

    Article  CAS  Google Scholar 

  26. Danese E, Lippi G, Montagnana M. Red blood cell distribution width and cardiovascular diseases. J Thorac Dis. 2015;7(10):E402–E11.

    PubMed  PubMed Central  Google Scholar 

  27. Krečak I, Krečak F, Gverić-Krečak V. High red blood cell distribution width might predict thrombosis in essential thrombocythemia and polycythemia vera. Blood Cells Mol Dis. 2020;80:102368.

    Article  Google Scholar 

  28. Lucijanic M, Pejsa V, Jaksic O, Mitrovic Z, Tomasovic-Loncaric C, Stoos-Veic T, et al. The degree of anisocytosis predicts survival in patients with primary myelofibrosis. Acta Haematol. 2016;136(2):98–100.

    Article  Google Scholar 

  29. Verstovsek S, De Stefano V, Heidel FH, Zuurman M, Zaiac M, Bigan E, et al. US Optum database study in polycythemia vera patients: thromboembolic events (TEs) with hydroxyurea (HU) vs ruxolitinib switch therapy and machine-learning model to predict incidence of TEs and HU failure. Blood. 2019;134(Supplement_1):1659.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Krečak MD, PhD.

Ethics declarations

Conflict of interest

I. Krečak, M. Lucijanić, I. Zekanović, H. Holik, M. Morić Perić, M. Šupe, B. Coha and V. Gverić-Krečak declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krečak, I., Lucijanić, M., Zekanović, I. et al. Hematocrit to hemoglobin ratio as a prognostic marker in polycythemia vera. Wien Klin Wochenschr 134, 110–117 (2022). https://doi.org/10.1007/s00508-021-01967-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00508-021-01967-z

Keywords

Navigation