Skip to main content
Log in

Static and dynamic balance impairment and relationship with disease-related factors in patients with chronic obstructive pulmonary disease

A cross-sectional study

  • original article
  • Published:
Wiener klinische Wochenschrift Aims and scope Submit manuscript

Summary

Background

Disease and aging-related factors may predispose chronic obstructive pulmonary disease (COPD) patients to impaired balance, although the underlying determinants of impaired balance in COPD patients are still unknown. The purpose of this study was to identify the determinants of impaired balance in COPD patients. Also, we aimed to determine which balance measures (clinical or laboratory tests) are more indicative in determining balance impairment in these patients.

Methods

This cross-sectional study recruited 24 patients with moderate to severe COPD and 24 age-matched healthy subjects. Participants were evaluated regarding demographic and clinical data, previous falls history, lower limb muscle strength, exercise capacity, physical activity and balance level.

Results

COPD patients exhibited significantly a longer test duration on timed up and go test, a higher sway index on the postural stability and lower directional control score on the limit of stability of Biodex balance system (all, p < 0.001) compared to healthy controls, whereas there was no difference in Berg balance scale score between groups (p > 0.05). Balance impairment of the patient group was significantly associated with nonpulmonary conditions, such as physical activity level, exercise capacity, lower limb muscle strength, and with fall history. Also, COPD patients represented significantly lower physical activity level and exercise capacity, weaker lower limb muscle strength than healthy controls (all, p < 0.001).

Conclusions

Patients with moderate to severe COPD exhibit apparently important reductions in balance control that is directly associated with nonpulmonary consequences and fall history. These results may be extremely important to fall prevention and to guide the development of interventions for this population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Han MK, Agusti A, Calverley PM, Celli BR, Criner G, Curtis JL, et al. Chronic obstructive pulmonary disease phenotypes: the future of COPD. Am J Respir Crit Care Med. 2010;182:598–604.

    Article  Google Scholar 

  2. Park JK, Deutz NEP, Cruthirds CL, Kirschner SK, Park H, Madigan ML, et al. Risk factors for postural and functional balance impairment in patients with chronic obstructive pulmonary disease. J Clin Med. 2020;9(2):609.

    Article  CAS  Google Scholar 

  3. Loughran KJ, Atkinson G, Beauchamp MK, Dixon J, Martin D, Rahim S, et al. Balance impairment in individuals with COPD: a systematic review with meta-analysis. Thorax. 2020;75:539–46.

    Article  Google Scholar 

  4. Ozalevli S, Ilgin D, Narin S, Akkoclu A. Association between disease-related factors and balance and falls among the elderly with COPD: a cross-sectional study. Aging Clin Exp Res. 2011;23:372–7.

    Article  Google Scholar 

  5. de Castro LA, Ribeiro LR, Mesquita R, de Carvalho DR, Felcar JM, Merli MF, et al. Static and functional balance in individuals with COPD: comparison with healthy controls and differences according to sex and disease severity. Respir Care. 2016;61:1488–96.

    Article  Google Scholar 

  6. Chuatrakoon B, Ngai SPC, Sungkarat S, Uthaikhup S. Balance impairment and effectiveness of exercise intervention in chronic obstructive pulmonary disease—a systematic review. Arch Phys Med Rehabil. 2020;101:1590–602.

    Article  Google Scholar 

  7. Beauchamp MK, Sibley KM, Lakhani B, Romano J, Mathur S, Goldstein RS, et al. Impairments in systems underlying control of balance in COPD. Chest. 2012;141:1496–503.

    Article  Google Scholar 

  8. Oliveira CC, Lee AL, McGinley J, Anderson GP, Clark RA, Thompson M, et al. Balance and falls in acute exacerbation of chronic obstructive pulmonary disease: a prospective study. COPD. 2017;14:518–25.

    Article  Google Scholar 

  9. Roig M, Eng JJ, Road JD, Reid WD. Falls in patients with chronic obstructive pulmonary disease: a call for further research. Respir Med. 2009;103:1257–69.

    Article  Google Scholar 

  10. Porto EF, Castro AA, Schmidt VG, Rabelo HM, Kumpel C, Nascimento OA, et al. Postural control in chronic obstructive pulmonary disease: a systematic review. Int J Chron Obstruct Pulmon Dis. 2015;10:1233–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Oliveira CC, Lee A, Granger CL, Miller KJ, Irving LB, Denehy L. Postural control and fear of falling assessment in people with chronic obstructive pulmonary disease: a systematic review of instruments, international classification of functioning, disability and health linkage, and measurement properties. Arch Phys Med Rehabil. 2013;94:1784–1799.e7.

    Article  Google Scholar 

  12. Mirza S, Clay RD, Koslow MA, Scanlon PD. COPD guidelines: a review of the 2018 GOLD report. Mayo Clin Proc. 2018;93:1488–502.

    Article  Google Scholar 

  13. Crisan AF, Oancea C, Timar B, Fira-Mladinescu O, Tudorache V. Balance impairment in patients with COPD. PLoS ONE. 2015;10:e120573.

    Article  Google Scholar 

  14. Wanger J, Clausen JL, Coates A, Pedersen OF, Brusasco V, Burgos F, et al. Standardisation of the measurement of lung volumes. Eur Respir J. 2005;26:511–22.

    Article  CAS  Google Scholar 

  15. Cachupe WJ, Shifflett B, Kahanov L, Wughalter EH. Reliability of biodex balance system measures. Meas Phys Educ Exerc Sci. 2001;5:97–108.

    Article  Google Scholar 

  16. Mkacher W, Tabka Z, Trabelsi Y. Minimal detectable change for balance measurements in patients with COPD. J Cardiopulm Rehabil Prev. 2017;37:223–8.

    Article  Google Scholar 

  17. Hauer K, Lamb SE, Jorstad EC, Todd C, Becker C. Systematic review of definitions and methods of measuring falls in randomised controlled fall prevention trials. Age Ageing. 2006;35:5–10.

    Article  Google Scholar 

  18. Wang C‑Y, Olson SL, Protas EJ. Test-retest strength reliability: hand-held dynamometry in community-dwelling elderly fallers. Arch Phys Med Rehabil. 2002;83:811–5.

    Article  Google Scholar 

  19. ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med. 2002;166:111–7.

    Article  Google Scholar 

  20. Saglam M, Arikan H, Savci S, Inal Ince D, Boşnak Güçlü M, Karabulut E, et al. International physical activity questionnaire: reliability and validity of the Turkish version. Percept Mot Skills. 2010;111:278–84.

    Article  Google Scholar 

  21. Munari AB, Gulart AA, Dos Santos K, Venâncio RS, Karloh M, Mayer AF. Modified medical research council dyspnea scale in GOLD classification better reflects physical activities of daily living. Respir Care. 2018;63:77–85.

    Article  Google Scholar 

  22. Smith MD, Chang AT, Seale HE, Walsh JR, Hodges PW. Balance is impaired in people with chronic obstructive pulmonary disease. Gait Posture. 2010;31:456–60.

    Article  Google Scholar 

  23. Beauchamp MK, O’Hoski S, Goldstein RS, Brooks D. Effect of pulmonary rehabilitation on balance in persons with chronic obstructive pulmonary disease. Arch Phys Med Rehabil. 2010;91:1460–5.

    Article  Google Scholar 

  24. Bennie S, Bruner K, Dizon A, Fritz H, Goodman B, Peterson S. Measurements of balance: comparison of the timed “up and go” test and functional reach test with the Berg balance scale. J Phys Ther Sci. 2003;15:93–7.

    Article  Google Scholar 

  25. Butcher SJ, Meshke JM, Sheppard MS. Reductions in functional balance, coordination, and mobility measures among patients with stable chronic obstructive pulmonary disease. J Cardiopulm Rehabil. 2004;24:274–80.

    Article  Google Scholar 

  26. Beauchamp MK, Hill K, Goldstein RS, Janaudis-Ferreira T, Brooks D. Impairments in balance discriminate fallers from non-fallers in COPD. Respir Med. 2009;103:1885–91.

    Article  CAS  Google Scholar 

  27. Bradley JM, Lasserson T, Elborn S, Macmahon J, O’Neill B. A systematic review of randomized controlled trials examining the short-term benefit of ambulatory oxygen in COPD. Chest. 2007;131:278–85.

    Article  Google Scholar 

  28. Ribeiro F, Oliveira J. Aging effects on joint proprioception: the role of physical activity in proprioception preservation. Eur Rev Aging Phys Act. 2007;4:71.

    Article  Google Scholar 

  29. Katajisto M, Kupiainen H, Rantanen P, Lindqvist A, Kilpelainen M, Tikkanen H, et al. Physical inactivity in COPD and increased patient perception of dyspnea. Int J Chron Obstruct Pulmon Dis. 2012;7:743–55.

    Article  Google Scholar 

  30. Janssens L, Brumagne S, McConnell AK, Claeys K, Pijnenburg M, Burtin C, et al. Proprioceptive changes impair balance control in individuals with chronic obstructive pulmonary disease. PLoS One. 2013;8:e57949.

    Article  CAS  Google Scholar 

  31. Evans RA, Kaplovitch E, Beauchamp MK, Dolmage TE, Goldstein RS, Gillies CL, et al. Is quadriceps endurance reduced in COPD?: A systematic review. Chest. 2015;147:673–84.

    Article  Google Scholar 

  32. Hodges PW, Gurfinkel VS, Brumagne S, Smith TC, Cordo PC. Coexistence of stability and mobility in postural control: evidence from postural compensation for respiration. Exp Brain Res. 2002;144:293–302.

    Article  CAS  Google Scholar 

  33. Schmid M, Conforto S, Bibbo D, D’Alessio T. Respiration and postural sway: detection of phase synchronizations and interactions. Hum Mov Sci. 2004;23:105–19.

    Article  Google Scholar 

  34. Pedrozo MD, de Silveira AF. Balance assessment in people with chronic obstructive pulmonary disease. Fisioter Mov. 2015;28:149–56.

    Article  Google Scholar 

  35. Smith MD, Chang AT, Hodges PW. Balance recovery is compromised and trunk muscle activity is increased in chronic obstructive pulmonary disease. Gait Posture. 2016;43:101–7.

    Article  Google Scholar 

  36. Ku PX, Abu Osman NA, Wan Abas WAB. The limits of stability and muscle activity in middle-aged adults during static and dynamic stance. J Biomech. 2016;49:3943–8.

    Article  CAS  Google Scholar 

  37. Beauchamp MK. Balance assessment in people with COPD: an evidence-based guide. Chron Respir Dis. 2019;16:1479973118820311.

    Article  Google Scholar 

  38. Nguyen US, Kiel DP, Li W, Galica AM, Kang HG, Casey VA, et al. Correlations of clinical and laboratory measures of balance in older men and women. Arthritis Care Res (Hoboken). 2012;64:1895–902.

    Article  Google Scholar 

Download references

Acknowledgements

We appreciate all the people who cooperated in this research.

Author information

Authors and Affiliations

Authors

Contributions

M. Eymir and H. Yakut designed and performed the research, and analyzed the data. M. Eymir, H. Yakut and S. Özalevli drafted the manuscript. S. Özalevli and A. Ö. Alpaydın reviewed and modified the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Musa Eymir.

Ethics declarations

Conflict of interest

M. Eymir, H. Yakut, S. Özalevli and A. Ö. Alpaydın declare that they have no competing interests.

Ethical standards

This study was conducted in accordance with the Declaration of Helsinki and approved by the Medical Ethics Committee of Dokuz Eylul University. Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eymir, M., Yakut, H., Özalevli, S. et al. Static and dynamic balance impairment and relationship with disease-related factors in patients with chronic obstructive pulmonary disease. Wien Klin Wochenschr 133, 1186–1194 (2021). https://doi.org/10.1007/s00508-021-01918-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00508-021-01918-8

Keywords

Navigation