Skip to main content
Log in

Recommendations on the utilization of telemedicine in cardiology

  • position paper
  • Published:
Wiener klinische Wochenschrift Aims and scope Submit manuscript

Summary

The enormous progress made in recent years in the field of information and communication technology and also in sensor and computer technology has affected numerous fields of medicine and is capable of inducing even radical changes in diagnostic and therapeutic processes. This is particularly true for cardiology, where, for example, telemetric monitoring of cardiac and circulatory functions has been in use for many years. Nevertheless, broad application of newer telemedical processes has not yet been achieved to the extent one would expect from the encouraging results of numerous clinical studies in this field and the state of the art of the underlying technology. In the present paper, the Working Group on Rhythmology of the Austrian Cardiological Society aims to provoke a critical discussion of the digital change in cardiology and to make recommendations for the implementation of those telemedical processes that have been shown to exert positive effects on a wide variety of medical and economic parameters. The greatest benefit of telecardiological applications is certainly to be found in the long-term care of patients with chronic cardiovascular diseases. Accordingly, follow-up care of patients with cardiological rhythm implants, management of chronic heart failure and secondary prevention following an acute cardiac event during rehabilitation are currently the most important fields of application. Telemedicine is intended to enable high-quality and cost-efficient care for an increasing number of patients, whose care poses one of the greatest challenges to our healthcare system. Not least of all, telemedicine should make a decisive contribution to improving the quality of life of this segment of the population by favorably influencing mortality, morbidity and hospitalization as well as the patient’s contribution to treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AAI:

Single chamber atrial pacing

AAIR:

Single chamber atrial rate response pacing

ACS:

Acute coronary syndrome

AF:

Atrial fibrillation

AHA:

American Heart Association

AHRE:

Atrial high-rate episode

AI:

Artificial intelligence

ATP:

Antitachycardia pacing

CDA:

Clinical document architecture

CHD:

Coronary heart disease

CIED:

Cardiac implantable electronic device

CR:

Cardiac rehabilitation

CRT:

Cardiac resynchronization therapy

CRT‑P:

Cardiac resynchronization therapy-pacing only

CRT‑D:

Cardiac resynchronization therapy with defibrillator/cardioverter back-up

CTR:

Cardiac telerehabilitation

DDD:

Dual chamber sequential pacing

DDDR:

Dual chamber sequential rate response pacing

DGK:

German Society for Cardiology

DMP:

Disease management program

ELGA:

“Elektronische Gesundheitsakte” (Electronic health records)

ERAP:

Expanded rehabilitation/aftercare program

ERI:

Elective replacement indicator

ESC:

European Society of Cardiology

HFA:

Heart Failure Association of the ESC

HL7:

Health Level Seven International

HRS:

Heart Rhythm Society

ICD:

Implantable defibrillator cardioverter

ICT:

Information and communication technology

IEGM:

Intracardiac electrogram

ILR:

Implantable loop recorder

IT:

Information technology

NYHA:

New York Heart Association

ÖKG:

Austrian Cardiological Society

PDA:

Personal digital assistant

PM:

Pacemaker

R:

Rehabilitation

RI:

Remote interrogation

RM:

Remote monitoring

RRT:

Recommended replacement time

S‑ICD:

Subcutaneous implantable defibrillator cardioverter

TM:

Telemedicine

TMC:

Telemedical center

TR:

Telerehabilitation

VC:

Videoconferencing

VVI:

Single chamber ventricular pacing

VVIR:

Single chamber ventricular rate response pacing

WHO:

World Health Organization

References

  1. Wilkins E, Wilson L, Wickramasinghe K, et al. European cardiovascular disease statistics 2017. Brussels: European Heart Network; 2017.

    Google Scholar 

  2. Atlas Writing Group, Timmis A, Townsend N, Gale C, et al. European Society of Cardiology: Cardiovascular Disease Statistics 2017. Eur Heart J. 2018;39:508–79. https://doi.org/10.1093/eurheartj_ehx628.

    Article  Google Scholar 

  3. Gruska M. Telemedizin in der Kardiologie. J Kardiol. 2009;16:66–70.

    Google Scholar 

  4. Schwamm LH, Chumbler N, Brown E, et al. Recommendations for the implementation of telehealth in cardiovascular and stroke care: a policy statement from the American Heart Association. Circulation. 2017;135:e24–e44. https://doi.org/10.1161/cir.0000000000000475.

    Article  PubMed  Google Scholar 

  5. Frederix I, Caiani EG, Dendale P, et al. ESC e‑Cardiology Working Group Position Paper: overcoming challenges in digital health implementation in cardiovascular medicine. Eur J Prev Cardiol. 2019;26:1166–77. https://doi.org/10.1177/2047487319832394.

    Article  PubMed  Google Scholar 

  6. Stockburger M, Helms TM, Perings CA, et al. Nutzenbewertung des strukturierten Telemonitorings mithilfe von aktiven Herzrhythmusimplantaten. Kardiologe. 2017;11:452–9. https://doi.org/10.1007/s12181-017-0203-8.

    Article  Google Scholar 

  7. Helms TM, Müller A, Perings C, et al. Das Telemedizinische Zentrum als essenzieller Baustein konzeptioneller Ansätze zum Telemonitoring kardialer Patienten. Herzschrittmacherther Elektrophysiol. 2017;28:293–302. https://doi.org/10.1007/s00399-017-0527-x.

    Article  CAS  PubMed  Google Scholar 

  8. Helms TM, Stockburger M, Köhler F, et al. Grundlegende Strukturmerkmale eines kardiologischen Telemedizinzentrums für Patienten mit Herzinsuffizienz und implantierten Devices, Herzrhythmusstörungen und erhöhtem Risiko für den plötzlichen Herztod. Herzschrittmacherther Elektrophysiol. 2019;30:136–42. https://doi.org/10.1007/s00399-018-0606-7.

    Article  CAS  PubMed  Google Scholar 

  9. Helms TM, Stockburger M, Köhler F, et al. Positionspapier Telemonitoring. Herzschrittmacherther Elektrophysiol. 2019;30:287–97. https://doi.org/10.1007/s00399-019-0630-2.

    Article  CAS  PubMed  Google Scholar 

  10. WHO. A health telematics policy in support of WHO’s Health-For-All strategy for global health development: report of the WHO group consultation on health telematics. 11–16 December 1997; Geneva. Geneva: World Health Organization; 1998.

    Google Scholar 

  11. WHO. Global Observatory for eHealth. Telemedicine: opportunities and developments in Member States: report on the second global survey on eHealth. Geneva: World Health Organization; 2010.

    Google Scholar 

  12. Pagliari C, Sloan D, Gregor P, et al. What is eHealth (4): a scoping exercise to map the field. J Med Internet Res. 2005;7(1):e9. https://doi.org/10.2196/jmir.7.1.e9.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Istepanian RSH, Pattichis SC, Laxmiinarayan S. Ubiquitous mHealth systems and the convergence towards 4G mobile technologies. In: Istepanian RSH, Pattichis SC, Laxmiinarayan S, editors. M‑health: emerging mobile health systems. London: Springer; 2006. pp. 3–14.

    Chapter  Google Scholar 

  14. Europäische Kommission. 219 final: Grünbuch über Mobile-Health-Dienste. Brüssel: Europäische Kommission. COM; 2014.

    Google Scholar 

  15. Rodriguez AC, Roda C, Gonzalez P, et al. Contextualizing tasks in telerehabilitation systems for older people. In: International workshop on ambient assisted living. Cham: Springer; 2015. pp. 29–41.

    Google Scholar 

  16. Brennan DM, Tindall L, Theodoros D, et al. A blueprint for telerehabilitation guidelines-October 2010. Telemed J E Health. 2011;17:662–5. https://doi.org/10.1089/tmj.2011.0036.

    Article  PubMed  Google Scholar 

  17. Rybak K. Telemedizin in der Überwachung und Nachsorge von Herzschrittmachern und Systemen zur Kardialen Resynchronisationstherapie (CRT). In: Goss F, Middeke M, Mengden T, al, editors. Praktische Telemedizin in Kardiologie und Hypertensiologie. Stuttgart: Springer; 2009. pp. 58–77.

    Google Scholar 

  18. Varma N, Epstein AE, Irimpen A, et al. Efficacy and safety of automatic remote monitoring for implantable cardioverter-defibrillator follow-up: the Lumos‑T Safely Reduces Routine Office Device Follow-up (TRUST) trial. Circulation. 2010;122:325–32. https://doi.org/10.1161/circulationaha.110.937409.

    Article  PubMed  Google Scholar 

  19. Brignole M, Auricchio A, Baron-Esquivias G, et al. 2013 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy: the task force on cardiac pacing and resynchronization therapy of the European Society of Cardiology (ESC). Developed in collaboration with the European Heart Rhythm Association (EHRA). Europace. 2013(15):1070–1011. https://doi.org/10.1093/europace/eut206.

  20. Mabo P, Victor F, Bazin P, et al. A randomized trial of long-term remote monitoring of pacemaker recipients (the COMPAS trial). Eur Heart J. 2012;33:1105–11. https://doi.org/10.1093/eurheartj/ehr419.

    Article  PubMed  Google Scholar 

  21. Crossley GH, Chen J, Choucair W, et al. Clinical benefits of remote versus transtelephonic monitoring of implanted pacemakers. J Am Coll Cardiol. 2009;54:2012–9. https://doi.org/10.1016/j.jacc.2009.10.001.

    Article  PubMed  Google Scholar 

  22. Shanmugam N, Boerdlein A, Proff J, et al. Detection of atrial high-rate events by continuous home monitoring: clinical significance in the heart failure-cardiac resynchronization therapy population. Europace. 2012;14:230–7. https://doi.org/10.1093/europace/eur293.

    Article  PubMed  Google Scholar 

  23. Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2016;18:891–975. https://doi.org/10.1002/ejhf.592.

    Article  Google Scholar 

  24. Slotwiner D, Varma N, Akar JG, et al. HRS Expert Consensus Statement on remote interrogation and moni-toring for cardiovascular implantable electronic devices. Heart Rhythm. 2015;12:e69–e100. https://doi.org/10.1016/j.hrthm.2015.05.008.

    Article  PubMed  Google Scholar 

  25. Varma N, Piccini J, Snell J, et al. The relationship between level of adherence to automatic wireless remote monitoring and survival in pacemaker and defibrillator patients. J Am Coll Cardiol. 2015;65:2601–10. https://doi.org/10.1016/j.jacc.2015.04.033.

    Article  PubMed  Google Scholar 

  26. Capucci A, de Simone A, Luzi M, et al. Economic impact of remote monitoring after implantable defibrillators implantation in heart failure patients: an analysis from the EFFECT study. Europace. 2017;19:1493–9. https://doi.org/10.1093/europace/eux017.

    Article  PubMed  Google Scholar 

  27. Ladapo JA, Turakhia MP, Ryan MP, et al. Health Care Utilization and Expenditures Associated with remote monitoring in patients with implantable cardiac devices. Am J Card. 2016;117:1455–62. https://doi.org/10.1016/j.amjcard.2016.02.015.

    Article  PubMed  Google Scholar 

  28. Boriani G, Da Costa A, Quesada A, et al. Effects of remote monitoring on clinical outcomes and use of healthcare resources in heart failure patients with biventricular defibrillators: results of the MORE-CARE multicentre randomized controlled trial. Eur J Heart Fail. 2017;19:416–25. https://doi.org/10.1002/ejhf.626.

    Article  PubMed  Google Scholar 

  29. Santini M, Gasparini M, Landolina M, et al. Device-detected atrial tachyarrhythmias predict adverse outcome in real-world patients with implantable biventricular defibrillators. J Am Coll Cardiol. 2011;57:167–72. https://doi.org/10.1016/j.jacc.2010.08.624.

    Article  PubMed  Google Scholar 

  30. Crossley GH, Boyle A, Vitense H, et al. The CONNECT (Clinical Evaluation of Remote Notification to Reduce Time to Clinical Decision) trial: the value of wireless remote monitoring with automatic clinician alerts. J Am Coll Cardiol. 2011;57:1181–9. https://doi.org/10.1016/j.jacc.2010.12.012.

    Article  PubMed  Google Scholar 

  31. Guédon-Moreau L, Lacroix D, Sadoul N, et al. A randomized study of remote follow-up of implantable cardioverter defibrillators: safety and efficacy report of the ECOST trial. Eur Heart J. 2013;34:605–14. https://doi.org/10.1093/eurheartj/ehs425.

    Article  PubMed  Google Scholar 

  32. Hindricks G, Taborsky M, Glikson M, et al. Implant-based multiparameter telemonitoring of patients with heart failure (IN-TIME): a randomised controlled trial. Lancet. 2014;384:583–90.

    Article  Google Scholar 

  33. Vamos M, Nyolczas N, Bari Z, et al. Refined heart failure detection algorithm for improved clinical reliability of Optivol alerts in CRT‑D recipients. Card J. 2018;25:236–44. https://doi.org/10.5603/cj.a2017.0077.

    Article  Google Scholar 

  34. Boehmer JP, Hariharan R, Devecchi FG, et al. A multisensor algorithm predicts heart failure events in patients with implanted devices: results from the multiSENSE study. JACC Heart Fail. 2017;5:216–25. https://doi.org/10.1016/j.jchf.2016.12.011.

    Article  PubMed  Google Scholar 

  35. Leclercq C, Burri H, Curnis A, et al. Cardiac resynchronization therapy non-responder to responder conversion rate in the more response to cardiac resynchronization therapy with MultiPoint Pacing (MORE-CRT MPP) study: results from Phase I. Eur Heart J. 2019;40:2979–87. https://doi.org/10.1093/eurheartj/ehz109.

    Article  PubMed  Google Scholar 

  36. Hindricks G, Elsner C, Piorkowski C, et al. Quarterly vs. yearly clinical follow-up of remotely monitored recipients of prophylactic implantable cardioverter-defibrillators: results of the REFORM trial. Eur Heart J. 2014;35:98–105. https://doi.org/10.1093/eurheartj/eht207.

    Article  PubMed  Google Scholar 

  37. Saxon LA, Hayes DL, Gilliam FR, et al. Long-term outcome after ICD and CRT implantation and influence of remote device follow-up: the ALTITUDE survival study. Circulation. 2010;122:2359–67. https://doi.org/10.1161/circulationaha.110.960633.

    Article  PubMed  Google Scholar 

  38. Akar JG, Bao H, Jones PW, et al. Use of remote monitoring is associated with lower risk of adverse outcomes among patients with implanted cardiac defibrillators. Circ Arrhythm Electrophysiol. 2015;8:1173–80. https://doi.org/10.1161/circep.114.003030.

    Article  PubMed  Google Scholar 

  39. Mittal S, Piccini J, Snell J, et al. Improved surivival in patients enrolled promptly into remote monitoring following cardiac electronic device implantation. J Interv Card Electrophysiol. 2016;46:129–36. https://doi.org/10.1007/s10840-016-0112-y.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Parthiban N, Esterman A, Mahajan R, et al. Remote monitoring of implantable cardioverter-defibrillators: a systematic review and meta-analysis of clinical outcomes. J Am Coll Cardiol. 2015;65:2591–600. https://doi.org/10.1016/j.jacc.2015.04.029.

    Article  PubMed  Google Scholar 

  41. García-Fernández FJ, Osca-Asensi J, Romero R, et al. Safety and efficiency of a common and simplified protocol for pacemaker and defibrillator surveillance based on remote monitoring only: a long-term randomized trial (RM-ALONE). Eur Heart J. 2019;40:1837–46. https://doi.org/10.1093/eurheartj/ehz067.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Brignole M, Vardas P, Hoffman E, et al. Indications for the use of diagnostic implantable and external ECG loop recorders. Europace. 2009;11:671–87. https://doi.org/10.1093/europace/eup097.

    Article  PubMed  Google Scholar 

  43. Bloch Thomsen PE, Jons C, Raatikainen MJ, et al. Long-term recording of cardiac arrhythmias with an implantable cardiac monitor in patients with reduced ejection fraction after acute myocardial infarction: the Cardiac Arrhythmias and Risk Stratification After Acute Myocardial Infarction (CARISMA) study. Circulation. 2010;122:1258–64. https://doi.org/10.1161/circulationaha.109.902148.

    Article  PubMed  Google Scholar 

  44. Krahn AD, Klein GJ, Yee R, et al. Final results from a pilot study with an implantable loop recorder to determine the etiology of syncope in patients with negative noninvasive and invasive testing. Am J Cardiol. 1998;82:117–9.

    Article  CAS  Google Scholar 

  45. Hindricks G, Pokushalov E, Urban L, et al. Performance of a new leadless implantable cardiac monitor in detecting and quantifying atrial fibrillation: results of the XPECT trial. Circ Arrhythm Electrophysiol. 2010;3:141–7. https://doi.org/10.1161/circep.109.877852.

    Article  PubMed  Google Scholar 

  46. Pürerfellner H, Sanders P, Pokushalov E, et al. Miniaturized reveal LINQ insertable cardiac monitoring system: first-in-human experience. Heart Rhythm. 2015;12:1113–9. https://doi.org/10.1016/j.hrthm.2015.02.030.

    Article  PubMed  Google Scholar 

  47. Sanders P, Pürerfellner H, Pokushalov E, et al. Performance of a new atrial fibrillation detection algorithm in a miniaturized insertable cardiac monitor: results from the Reveal LINQ Usability Study. Heart Rhythm. 2016;13:1425–30. https://doi.org/10.1016/j.hrthm.2016.03.005.

    Article  PubMed  Google Scholar 

  48. Brignole M, Moya A, de Lange FJ, et al. 2018 ESC Guidelines for the diagnosis and management of syncope. Eur Heart J. 2018;39:1883–948. https://doi.org/10.1093/eurheartj/ehy037.

    Article  PubMed  Google Scholar 

  49. January CT, Wann LS, Calkins H, et al. 2019 AHA/ACC/HRS Focused Update of the 2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society in Collaboration With the Society of Thoracic Surgeons. Circulation. 2019;140:e125–e51.

    Article  Google Scholar 

  50. Maines M, Zorzi A, Tomasi G, al at. Clinical impact, safety, and accuracy of the remotely monitored implantable loop recorder Medtronic Reveal LINQTM. Europace. 2018;20:1050–7. https://doi.org/10.1093/europace/eux187.

    Article  PubMed  Google Scholar 

  51. Søgaard P, Behrens S, Konyi A, et al. Transmission and loss of ECG snapshots: Remote monitoring in implantable cardiac monitors. J Electrocardiol. 2019;56:24–8. https://doi.org/10.1016/j.jelectrocard.2019.06.005.

    Article  PubMed  Google Scholar 

  52. Eurlings CGMJ, Boyne JJ, de Boer RA, et al. Telemedicine in heart failure-more than nice to have? Neth Heart J. 2019;27:5–15. https://doi.org/10.1007/s12471-018-1202-5.

    Article  CAS  PubMed  Google Scholar 

  53. Cowie MR, Bax J, Bruining N, et al. e‑Health: a position statement of the European Society of Cardiology. Eur Heart J. 2016;37:63–6. https://doi.org/10.1093/eurheartj/ehv416.

    Article  PubMed  Google Scholar 

  54. Von der Heidt A, Ammenwerth E, Bauer K, et al. HerzMobil Tirol network: rationale for and design of a collaborative heart failure disease management program in Austria. Wien Klin Wochenschr. 2014;126:734–41. https://doi.org/10.1007/s00508-014-0665-7.

    Article  PubMed  Google Scholar 

  55. Modre-Osprian R, Poelzl G, Von Der Heidt A, et al. Closed-loop healthcare monitoring in a collaborative heart failure network. Stud Health Technol Inform. 2014;198:17–24. https://doi.org/10.3233/978-1-61499-397-1-17.

    Article  PubMed  Google Scholar 

  56. Ammenwerth E, Fetz B, Gstrein S, et al. Herzmobil, an integrated and collaborative telemonitoring-based disease management program for patients with heart failure: a feasibility study paving the way to routine care. JMIR Cardio. 2018;2:e11. https://doi.org/10.2196/cardio.9936.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Poelzl G, Fetz B, Altenberger J, et al. Heart failure disease management programs in Austria 2019—a systematic survey of the Heart Failure Working Group and the Working Group for Cardiological Assistance and Care Personnel of the Austrian Society of Cardiology. Wien Klin Wochenschr. 2020; https://doi.org/10.1007/s00508-020-01615-y.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Koehler F, Koehler K, Deckwart O, et al. Efficacy of telemedical interventional management in patients with heart failure (TIM-HF2): a randomised, controlled, parallel-group, unmasked trial. Lancet. 2018;392:1047–57. https://doi.org/10.1016/s0140-6736(18)31880-4.

    Article  PubMed  Google Scholar 

  59. Nigls SC, Clark RA, Dierckx R, et al. Structured telephone support or non-invasive telemonitoring for patients with heart failure. Cochrane Database Syst Rev. 2015; https://doi.org/10.1002/14651858.cd007228.pub3.

    Article  Google Scholar 

  60. Seferovic PM, Ponikowski P, Anker SD, et al. Clinical practice update on heart failure 2019: pharmacotherapy, procedures, devices and patient management. An expert consensus meeting report of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2019;21:1169–86. https://doi.org/10.1002/ejhf.1531.

    Article  PubMed  Google Scholar 

  61. Wagenaar KP, Broekhuizen BDL, Jaarsma T, et al. Effectiveness of the European Society of Cardiology/Heart Failure Association website ‘heartfailurematters.org’ and an e‑health adjusted care pathway in patients with stable heart failure: results of the ‘e-Vita HF’ randomized controlled trial. Eur J Heart Fail. 2019;21:238–46. https://doi.org/10.1002/ejhf.1354.

    Article  PubMed  Google Scholar 

  62. Abraham WT, Stevenson LW, Bourge RC, et al. Sustained efficacy of pulmonary artery pressure to guide adjustment of chronic heart failure therapy: complete followup results from the CHAMPION randomised clinical trial. Lancet. 2016;387:453–61. https://doi.org/10.1016/s0140-6736(11)60101-3.

    Article  PubMed  Google Scholar 

  63. Eggerth A, Modre-Osprian R, Hayn D, et al. Comparison of body weight trend algorithms for prediction of heart failure related events in home care setting. Stud Health Technol Inform. 2017;236:219–26. https://doi.org/10.3233/978-1-61499-759-7-219.

    Article  PubMed  Google Scholar 

  64. Moertl D, Altenberger J, Bauer N, et al. Disease management programs in chronic heart failure: position statement of the Heart Failure Working Group and the Working Group of the Cardiological Assistance and Care Personnel of the Austrian Society of Cardiology. Wien Klin Wochenschr. 2017;129:869–78. https://doi.org/10.1007/s00508-017-1265-0.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Oldridge N, Pakosh M, Grace SL. A systematic review of recent cardiac rehabilitation meta-analyses in patients with coronary heart disease or heart failure. Future Cardiol. 2019;15:227–49. https://doi.org/10.2217/fca-2018-0085.

    Article  CAS  PubMed  Google Scholar 

  66. Pack QR, Goel K, Lahr BD, et al. Participation in cardiac rehabilitation and survival after coronary artery bypass graft surgery: a community-based study. Circulation. 2013;128:590–7. https://doi.org/10.1161/circulationaha.112.001365.

    Article  PubMed  Google Scholar 

  67. Kotseva K, Wood D, De Bacquer D, et al. EUROASPIRE IV: a European Society of Cardiology survey on the lifestyle, risk factor and therapeutic management of coronary patients from 24 European countries. Eur J Prev Cardiol. 2016;23:636–48. https://doi.org/10.1177/2047487315569401.

    Article  PubMed  Google Scholar 

  68. Gyimesi M, Fülöp G, Ivansits S, et al. Rehabilitationsplan. Wien: Gesundheit Österreich; 2016.

    Google Scholar 

  69. Mampuya WM. Cardiac rehabilitation past, present and future: an overview. Cardiovasc Diagn Ther. 2012;2:38–49. https://doi.org/10.3978/j.issn.2223-3652.2012.01.02.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Janssen V, De Gucht V, van Exel H, et al. Beyond resolutions? A randomized controlled trial of a self-regulation lifestyle programme for post-cardiac rehabilitation patients. Eur J Prev Cardiol. 2013;20:431–41. https://doi.org/10.1177/2047487312441728.

    Article  PubMed  Google Scholar 

  71. Brouwers RW, Kraal JJ, Traa SC, et al. Effects of cardiac telerehabilitation in patients with coronary artery disease using a personalised patient-centred web application: protocol for the SmartCare-CAD randomised controlled trial. BMC Cardiovasc Disord. 2017;17:46–57. https://doi.org/10.1186/s12872-017-0477-6.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Galea MD. Telemedicine in rehabilitation. Phys Med Rehabil Clin N Am. 2019;30:473–83. https://doi.org/10.1016/j.pmr.2018.12.002.

    Article  PubMed  Google Scholar 

  73. Frederix I, Solmi F, Piepoli MF, et al. Cardiac telerehabilitation: a novel cost-efficient care delivery strategy that can induce long-term health benefits. Eur J Prev Cardiol. 2017;24:1708–17. https://doi.org/10.1177/2047487317732274.

    Article  PubMed  Google Scholar 

  74. Thorup CB, Grønkjær M, Spindler H, et al. Pedometer use and self-determined motivation for walking in a cardiac telerehabilitation program: a qualitative study. BMC Sports Sci Med Rehabil. 2016;8:24. https://doi.org/10.1186/s13102-016-0048-7.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Frederix I, Vandijck D, Hens N, et al. Economic and social impact of increased cardiac rehabilitation uptake and cardiac telerehabilitation in Belgium—a cost-benefit analysis. Acta Cardiol. 2017;73:222–9. https://doi.org/10.1080/00015385.2017.1361892.

    Article  PubMed  Google Scholar 

  76. Hwang R, Bruning J, Morris NR, et al. Home-based telerehabilitation is not inferior to a centre-based program in patients with chronic heart failure: a randomised trial. J Physiother. 2017;63:101–7. https://doi.org/10.1016/j.jphys.2017.02.017.

    Article  PubMed  Google Scholar 

  77. Piotrowicz E, Baranowski R, Bilinska M, et al. A new model of home-based telemonitored cardiac rehabilitation in patients with heart failure: effectiveness, quality of life, and adherence. Eur J Heart Fail. 2010;12:164–71. https://doi.org/10.1093/eurjhf_hfp181.

    Article  PubMed  Google Scholar 

  78. Piotrowicz E, Zieliski T, Bodalski R, et al. Home-based telemonitored Nordic walking training is well accepted, safe, effective and has high adherence among heart failure patients, including those with cardiovascular implantable electronic devices: a randomised controlled study. Eur J Prev Cardiol. 2015;22:1368–77. https://doi.org/10.1177/2047487314551537.

    Article  PubMed  Google Scholar 

  79. Nouryan C, Morahan S, Pecinka K, et al. Home telemonitoring of community dwelling heart failure patients after home care discharge. Telemed J E Health. 2019;25:447–54. https://doi.org/10.1089/tmj.2018.0099.

    Article  PubMed  Google Scholar 

  80. Momsen AH, Hald K, Nielsen CV, et al. Effectiveness of expanded cardiac rehabilitation in patients diagnosed with coronary heart disease: a systematic review protocol. JBI Database System Rev Implement Rep. 2017;15:212–9. https://doi.org/10.11124/jbisrir-2016-003265.

    Article  PubMed  Google Scholar 

  81. Fors A, Swedberg K, Ulin K, et al. Effects of personcentred care after an event of acute coronary syndrome: two-year follow-up of a randomised controlled trial. Int J Cardiol. 2017;249:42–7. https://doi.org/10.1016/j.ijcard.2017.08.069.

    Article  PubMed  Google Scholar 

  82. Müller A, Rybak K, Klingenheben T, et al. Empfehlungen zum Telemonitoring bei Patienten mit implantierten Herzschrittmachern, Defibrillatoren und kardialen Resynchronisationssystemen. Kardiologe. 2017;7:181–93. https://doi.org/10.1007/s12181-013-0496-1.

    Article  Google Scholar 

  83. Slotwiner DJ, Abraham RL, Al-Khatib SM, et al. HRS White Paper on interoperability of data from cardiac implantable electronic devices (CIEDs). Heart Rhythm. 2019;16:e107–e27. https://doi.org/10.1016/j.hrthm.2019.05.002.

    Article  PubMed  Google Scholar 

  84. Slotwiner DJ, Tarakji KG, Al-Khatib SM. Transparent sharing of digital health data: a call to action. Heart Rhythm. 2019;16:e95–e106. https://doi.org/10.1016/j.hrthm.2019.04.042.

    Article  PubMed  Google Scholar 

  85. EU Commission. European interoperability framework—implementation strategy, annex 2. COM; 2017. 134 final, Brussels, 23.3.2017.

  86. EU Commission. Recommendation on a European Electronic Health Record exchange format. Brussels, 2019. (C(2019)800).

  87. EU Commission. Commission Decision 2015/1302 of 28 July 2015 on the identification of ‘Integrating the Healthcare Enterprise’ profiles for referencing in public procurement. Brussels, 2015.

  88. Sauermann S. Rahmenrichtlinie für die IT-Infrastruktur bei der Anwendung von Telemonitoring. Wien: BMGAS; 2018.

    Google Scholar 

  89. IEEE/ISO/CEN 11073. Health informatics—Point-of-care medical device communication.

  90. Heidbuchel H, Hindricks G, Broadhurst P, et al. EuroEco (European Health Economic Trial on Home Monitoring in ICD Patients): a provider perspective in five European countries on costs and net financial impact of follow-up with or without remote monitoring. Eur Heart J. 2015;36:158–69. https://doi.org/10.1093/eurheartj_ehu339.

    Article  PubMed  Google Scholar 

  91. Klersy C, Boriani G, De Silvestri A, et al. Effect of telemonitoring of cardiac implantable electronic devices on healthcare utilization: a meta-analysis of randomized controlled trials in patients with heart failure. Eur J Heart Fail. 2016;18:195–204. https://doi.org/10.1002/ejhf.470.

    Article  PubMed  Google Scholar 

  92. Hindricks G, Varma N, Kacet S, et al. Daily remote monitoring of implantable cardioverter-defibrillators: insights from the pooled patient-level data from three randomized controlled trials (IN-TIME, ECOST, TRUST). Eur Heart J. 2017;38:1749–55. https://doi.org/10.1093/eurheartj/ehx015.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Michael Gruska.

Ethics declarations

Conflict of interest

M. Gruska has received research grants and/or honoraria from the following companies: Biotronik. L. Fiedler has received research grants and/or honoraria from the following companies: Abbott, Biotronik, Boston Scientific. M. Gwechenberger has received research grants and/or honoraria from the following companies: Abbott, Biotronik, Boston Scientific, Medtronic. P. Lercher has received research grants and/or honoraria from the following companies: Biotronik, Medtronic. M. Martinek has received research grants and/or honoraria from the following companies: Abbott, Biotronik, Boston Scientific, Medtronic. M. Nürnberg has received research grants and/or honoraria from the following companies: Abbott, Biotronik, Boston Scientific, Medtronic. C. Schukro has received research grants and/or honoraria from the following companies: Biotronik, Boston Scientific, Medtronic. D. Scherr has received research grants and/or honoraria from the following companies: Biotronik, Medtronic, Zoll. C. Steinwender has received research grants and/or honoraria from the following companies: Abbott, Biotronik, Boston Scientific, Medtronic. M. Stühlinger has received research grants and/or honoraria from the following companies: Biotronik, Medtronic. A. Teubl has received research grants and/or honoraria from the following companies: Abbott, Biotronik, Microport. G. Aigner, J. Altenberger, D. Burkart-Küttner, G. Pölzl, G. Porenta and S. Sauermann declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The present recommendations were approved by the Austrian Cardiological Society in a resolution adopted by the Board of Directors on 2 March 2020.

All authors contributed equally to this position paper on behalf of the Working Group Rhythmology of the Austrian Cardiological Society.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gruska, M., Aigner, G., Altenberger, J. et al. Recommendations on the utilization of telemedicine in cardiology. Wien Klin Wochenschr 132, 782–800 (2020). https://doi.org/10.1007/s00508-020-01762-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00508-020-01762-2

Keywords

Navigation