Skip to main content
Log in

Evaluation of pulmonary venous variations in a large cohort

Multidetector computed tomography study with new variations

  • original article
  • Published:
Wiener klinische Wochenschrift Aims and scope Submit manuscript

Summary

Objective

The aim of this study was to assess pulmonary venous anatomy and to determine the frequency of each drainage pattern in a large cohort using multidetector computed tomography (MDCT) and three-dimensional (3D) imaging.

Material and methods

The chest CT images of 550 patients were retrospectively reviewed for pulmonary venous anatomy and variant patterns. All CT scans were performed using a 128 detectors row CT scanner after intravenous contrast administration. Pulmonary venous drainage pattern was documented for each patient and frequency of each drainage type was calculated. A useful classification system was used to simplify complex pulmonary venous anatomy.

Results

The expected typical anatomy was observed in 239 (43.5%) patients. The remaining 311 (56.5%) patients had anatomic variations on the right, left, or both sides. The most common variation was left common vein, seen in 177 (32.2%) patients, followed by accessory right middle lobe vein(s), seen in 112 (20.4%) patients. In the present study the frequency of variant anatomy on the right (34%) and left (33.3%) sides were similar.

Conclusion

The use of MDCT with 3D imaging is a preferable imaging tool for demonstrating pulmonary venous anatomy in detail, which shows significant variability. Considering the high prevalence of variations in the population, performing preprocedural MDCT may facilitate higher success rates in radiofrequency catheter ablation (RFCA) and help to perform safe and accurate surgery especially in video-assisted thoracic surgery (VATS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Jaïs P, Haïssaguerre M, Shah DC, et al. A focal source of atrial fibrillation treated by discrete radiofrequency ablation. Circulation. 1997;95(3):572–6.

    PubMed  Google Scholar 

  2. Haïssaguerre M, Jaïs P, Shah DC, et al. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med. 1998;339(10):659–66.

    PubMed  Google Scholar 

  3. Tsao HM, Wu MH, Yu WC, et al. Role of right middle pulmonary vein in patients with paroxysmal atrial fibrillation. J Cardiovasc Electrophysiol. 2001;12(12):1353–7.

    CAS  PubMed  Google Scholar 

  4. Cronin P, Sneider MB, Kazerooni EA, et al. MDCT of the left atrium and pulmonary veins in planning radiofrequency catheter ablation for atrial fibrillation: a how to guide. AJR Am J Roentgenol. 2004;183(3):767–78.

    PubMed  Google Scholar 

  5. Stojanovska J, Cronin P. CT imaging of left atrium and pulmonary veins for radiofrequency ablation of atrial fibrillation. Semin Roentgenol. 2008;43(2):154–66.

    PubMed  Google Scholar 

  6. Asai K, Urabe N, Yajima K, Suzuki K, Kazui T. Right upper lobe venous drainage posterior to the bronchus intermedius: preoperative identification by computed tomography. Ann Thorac Surg. 2005;79(6):1866–71.

    PubMed  Google Scholar 

  7. Yamada S, Suga A, Inoue Y, Iwazaki M. Importance of preoperative assessment of pulmonary venous anomaly for safe video-assisted lobectomy. Interact Cardiovasc Thorac Surg. 2010;10(6):851–4.

    PubMed  Google Scholar 

  8. Matsumoto I, Ohta Y, Tsunezuka Y, et al. A surgical case of lung cancer in a  patient with the left superior and inferior pulmonary veins forming a common trunk. Ann Thorac Cardiovasc Surg. 2005;11(5):316–9.

    PubMed  Google Scholar 

  9. Nakamura T, Koide M, Nakamura H, Toyoda F. The common trunk of the left pulmonary vein injured incidentally during lung cancer surgery. Ann Thorac Surg. 2009;87(3):954–5.

    PubMed  Google Scholar 

  10. Akiba T, Marushima H, Odaka M, Harada J, Kobayashi S, Morikawa T. Pulmonary vein analysis using three dimensional computed tomography angiography for thoracic surgery. Gen Thorac Cardiovasc Surg. 2010;58(7):331–5.

    PubMed  Google Scholar 

  11. Alfke H, Wagner HJ, Klose KJ. A case of an anomalous pulmonary vein of the right middle lobe. Cardiovasc Intervent Radiol. 1995;18(6):406–9.

    CAS  PubMed  Google Scholar 

  12. Collins DR, Shea PM, Vieweg WV. Idiopathic prominence of pulmonary veins on chest x‑ray. Angiology. 1982;33(9):613–6.

    CAS  PubMed  Google Scholar 

  13. Benfield JR, Gots RE, Mills D. Anomalous single left pulmonary vein mimicking a parenchymal nodule. Chest. 1971;59(1):101–3.

    CAS  PubMed  Google Scholar 

  14. Hasuo K, Numaguchi Y, Kishikawa T, Ikeda J, Matsuura K. Anomalous unilateral single pulmonary vein mimicking pulmonary varices. Chest. 1981;79(5):602–4.

    CAS  PubMed  Google Scholar 

  15. Tretheway DG, Francis GS, MacNeil DJ, Vieweg WV. Single left pulmonary vein with normal pulmonary venous drainage: a roentgenographic curiosity. Am J Cardiol. 1974;34(2):237–9.

    CAS  PubMed  Google Scholar 

  16. Rey C, Vaksmann G, Francart C. Anomalous unilateral single pulmonary vein mimicking partial anomalous pulmonary venous return. Cathet Cardiovasc Diagn. 1986;12(5):330–3.

    CAS  PubMed  Google Scholar 

  17. Ghaye B, Szapiro D, Dacher JN, et al. Percutaneous ablation for atrial fibrillation: the role of cross-sectional imaging. Radiographics. 2003;23(Spec No):S19–S33. discussion S48–50.

    PubMed  Google Scholar 

  18. Kato R, Lickfett L, Meininger G, et al. Pulmonary vein anatomy in patients undergoing catheter ablation of atrial fibrillation: lessons learned by use of magnetic resonance imaging. Circulation. 2003;107(15):2004–10.

    PubMed  Google Scholar 

  19. Mansour M, Holmvang G, Sosnovik D, et al. Assessment of pulmonary vein anatomic variability by magnetic resonance imaging: implications for catheter ablation techniques for atrial fibrillation. J Cardiovasc Electrophysiol. 2004;15(4):387–93.

    PubMed  Google Scholar 

  20. Lickfett L, Dickfeld T, Kato R, et al. Changes of pulmonary vein orifice size and location throughout the cardiac cycle: dynamic analysis using magnetic resonance cine imaging. J Cardiovasc Electrophysiol. 2005;16(6):582–8.

    PubMed  Google Scholar 

  21. Marom EM, Herndon JE, Kim YH, McAdams HP. Variations in pulmonary venous drainage to the left atrium: implications for radiofrequency ablation. Radiology. 2004;230(3):824–9.

    PubMed  Google Scholar 

  22. Sherif HM. The developing pulmonary veins and left atrium: implications for ablation strategy for atrial fibrillation. Eur J Cardiothorac Surg. 2013;44(5):792–9.

    PubMed  Google Scholar 

  23. Hassani C, Saremi F. Comprehensive cross-sectional imaging of the pulmonary veins. Radiographics. 2017;37(7):1928–54.

    PubMed  Google Scholar 

  24. Shukla L, Neha G, Soni G, Dhall V. Variations in the number of drainage pattern of pulmonary veins draining into left atrium. J Anat Soc India. 2012;61(1):5–8.

    Google Scholar 

  25. D’Souza AS, Bhat KM. Variations in the pulmonary venous ostium in the left atrium and its clinical importance. J Clin Diagn Res. 2014;8(2):10–1.

    PubMed  PubMed Central  Google Scholar 

  26. Thorning C, Hamady M, Liaw JV, et al. CT evaluation of pulmonary venous anatomy variation in patients undergoing catheter ablation for atrial fibrillation. Clin Imaging. 2011;35(1):1–9.

    PubMed  Google Scholar 

  27. Harbi A, Mhish H, Alshehri HZ, Das KM. Anatomical variation of pulmonary venous ostium and its relationship with atrial arrhythmia in the Saudi population. J Saudi Heart Assoc. 2014;26(2):81–5.

    PubMed  Google Scholar 

  28. Kaseno K, Tada H, Koyama K, et al. Prevalence and characterization of pulmonary vein variants in patients with atrial fibrillation determined using 3‑dimensional computed tomography. Am J Cardiol. 2008;101(11):1638–42.

    PubMed  Google Scholar 

  29. Hamdan A, Charalampos K, Roettgen R, et al. Magnetic resonance imaging versus computed tomography for characterization of pulmonary vein morphology before radiofrequency catheter ablation of atrial fibrillation. Am J Cardiol. 2009;104(11):1540–6.

    PubMed  Google Scholar 

  30. Anselmino M, Blandino A, Beninati S, et al. Morphologic analysis of left atrial anatomy by magnetic resonance angiography in patients with atrial fibrillation: a large single center experience. J Cardiovasc Electrophysiol. 2011;22(1):1–7.

    PubMed  Google Scholar 

  31. Wannasopha Y, Oilmungmool N, Euathrongchit J. Anatomical variations of pulmonary venous drainage in Thai people: multidetector CT study. Biomed Imaging Interv J. 2012;8(1):e4.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Yazar F, Ozdogmus O, Tuccar E, Bayramoglu A, Ozan H. Drainage patterns of middle lobe vein of right lung: an anatomical study. Eur J Cardiothorac Surg. 2002;22(5):717–20.

    PubMed  Google Scholar 

  33. Wang W, Buehler D, Hamzei A, Wang XN, Yuan XH. Comprehensive surgical approach to treat atrial fibrillation in patients with variant pulmonary venous anatomy. J Thorac Cardiovasc Surg. 2013;145(3):790–5.

    PubMed  Google Scholar 

  34. Tekbas G, Gumus H, Onder H, et al. Evaluation of pulmonary vein variations and anomalies with 64 slice multi detector computed tomography. Wien Klin Wochenschr. 2012;124(1–2):3–10.

    PubMed  Google Scholar 

  35. Vonken EPA, Velthuis BK, Wittkampf FH, Rensing BJ, Derksen R, Cramer MJM. Contrast-enhanced MRA and 3D visualization of pulmonary venous anatomy to assist radiofrequency catheter ablation. J Cardiovasc Magn Reson. 2003;5(4):545–51.

    CAS  PubMed  Google Scholar 

  36. Schwartzman D, Lacomis J, Wigginton WG. Characterization of left atrium and distal pulmonary vein morphology using multidimensional computed tomography. J Am Coll Cardiol. 2003;41(8):1349–57.

    PubMed  Google Scholar 

  37. Jongbloed MR, Bax JJ, Lamb HJ, et al. Multislice computed tomography versus intracardiac echocardiography to evaluate the pulmonary veins before radiofrequency catheter ablation of atrial fibrillation. J Am Coll Cardiol. 2005;45(3):343–50.

    PubMed  Google Scholar 

  38. Benini K, Marini M, Del Greco M, Nollo G, Manera V, Centonze M. Role of multidetector computed tomography in the anatomical definition of the left atrium-pulmonary vein complex in patients with atrial fibrillation. Personal experience and pictorial assay. Radiol Med. 2008;113(6):779–98.

    CAS  PubMed  Google Scholar 

  39. Toffanin G, Scarabeo V, Verlato R, De Conti F, Zampiero AA, Piovesana P. Transoesophageal echocardiographic evaluation of pulmonary vein anatomy in patients undergoing ostial radiofrequency catheter ablation for atrial fibrillation: a comparison with magnetic resonance angiography. J Cardiovasc Med (hagerstown). 2006;7(10):748–52.

    Google Scholar 

  40. Yamashita S, Tokuishi K, Anami K, et al. Thoracoscopic segmentectomy for T1 classification of non-small cell lung cancer: a single center experience. Eur J Cardiothorac Surg. 2012;42(1):83–8.

    PubMed  Google Scholar 

  41. Yamashita H. Variations in the pulmonary segments and the bronchovascular trees. Roentgenologic anatomy of the lung. Tokyo: Igaku-shoin; 1978. pp. 70–107.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derya Altinkaynak MD.

Ethics declarations

Conflict of interest

D. Altinkaynak and A. Koktener declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altinkaynak, D., Koktener, A. Evaluation of pulmonary venous variations in a large cohort. Wien Klin Wochenschr 131, 475–484 (2019). https://doi.org/10.1007/s00508-019-1517-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00508-019-1517-2

Keywords

Navigation