Skip to main content
Log in

Hard ticks as vectors—some basic issues

  • Lyme Borreliosis
  • Published:
Wiener klinische Wochenschrift Aims and scope Submit manuscript

Summary

There are various arthropods (e.g. insects, chiggers, mites, ticks) that take one or more blood meals on terrestrial vertebrates in the course of their lifetime. Among them are ixodid ticks (Acari, Ixodidae), all of which are obligately hematophagous. Their parasitic lifestyle predestines them to act as transmitters or vectors of microparasites, often pathogenic to humans and/or domestic animals. The list of ixodid tick-borne pathogens is long, encompassing viruses, bacteria, protozoans, and nematodes. The present mini-review gives a brief overview of the most relevant biological attributes that make ixodid ticks very efficient vectors compared with other hematophagous arthropod taxa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Junming Shi, Zhihong Hu, … Shu Shen

References

  1. Pavlovsky EN. On the natural focality of infectious and parasitic diseases. Vestn Akad Nauk Sssr. 1939;10:98–108. in Russian.

    Google Scholar 

  2. Pavlovsky EN. Natural nidality of transmissible diseases with special reference to the landscape epidemiology of zooanthroponoses. Champaign: University of Illinois Press; 1966. First published in Russian in 1964. Moscow, Leningrad: Nauka.

    Google Scholar 

  3. Zlobin VI, Pogodina VV, Kahl O. A brief history of the discovery of tick-borne encephalitis virus in the late 1930s (based on reminiscences of members of the expeditions, their colleagues, and relatives). Ticks Tick Borne Dis. 2017;8(6):813–20.

    Article  PubMed  Google Scholar 

  4. Gern L, Siegenthaler M, Hu CM, et al. Borrelia burgdorferi in rodents (Apodemus flavicollis and A. sylvaticus): duration and enhancement of infectivity for Ixodes ricinus ticks. Eur J Epidemiol. 1994;10(1):75–80.

    Article  PubMed  CAS  Google Scholar 

  5. Labuda M, Austyn JM, Zuffova E, Kožuch O, Fuchsberger N, Lysy J, Nuttall PA. Importance of localized skin infection in tick-borne encephalitis virus transmission. Virology. 1996;219:357–66.

    Article  PubMed  CAS  Google Scholar 

  6. Dietz K. The estimation of the basic reproduction number for infectious diseases. Stat Methods Med Res. 1993;2(1):23–41.

    Article  PubMed  CAS  Google Scholar 

  7. Kahl O, Gern L, Eisen L, Lane RS. Chapter 2. Ecological research on Borrelia burgdorferi sensu lato: terminology and methodological pitfalls. In: Gray JS, Kahl O, Lane RS, Stanek G, editors. Lyme borreliosis: biology, epidemiology and control. London: CABI; 2002. pp. 29–46.

    Chapter  Google Scholar 

  8. Balashov Y. Bloodsucking ticks (Ixodoidea), vectors of disease to man and animals. Akad Nauk SSSR, Zool. Inst. Leningrad; 1967. Entomol Soc Am. 1972;8:161–376. in Russian.

    Google Scholar 

  9. Sonenshine DS. Biology of ticks. Vol. 1. New York: Oxford University Press; 1991.

    Google Scholar 

  10. Anderson JM, Sonenshine DS, Valenzuela JG. Exploring the mialome of ticks: an annotated catalogue of midgut transcripts from the hard tick, Dermacentor variabilis (Acari: Ixodidae). BMC Genomics. 2008;9:552.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Sonenshine DS, Hynes WL, Ceraul SM, et al. Host blood proteins and peptides in the midgut of the tick Dermacentor variabilis contribute to bacterial control. Exp Appl Acarol. 2005;36:207–23. cited from Sonenshine and Anderson, 2014.

    Article  PubMed  CAS  Google Scholar 

  12. Kahl O. Investigations on the water balance of ticks (Acari, Ixodoidea) in the course of their postembryonic development with special reference to active water vapour uptake of the engorged phases. Germany: Free University of Berlin; 1989. In German. Doctoral Thesis.

    Google Scholar 

  13. Sonenshine DS, Anderson JM. Chapter 6: mouthparts and digestive system. In: Sonenshine DS, Roe RM, editors. Biology of ticks. 2nd ed. Vol. 1. New York: Oxford University Press; 2014. pp. 122–62.

    Google Scholar 

  14. Lees AD. Cloride regulation and the function of the coxal gland in ticks. Parasitology. 1946;37(3–4):172–84.

    Article  PubMed  CAS  Google Scholar 

  15. Kitaoka S. Physiological and ecological studies on some ticks. V. Nitrogen and iron excretion and amount of bloodmeal ingested during the blood sucking process in the tick. Natl Inst Anim Health Q (Tokyo). 1961;1:96–104.

    Google Scholar 

  16. Gregson JD. Observations on the movement of fluids in the vicinity of the mouthparts of naturally feeding Dermacentor andersoni  Stiles. Parasitology. 1967;57(1):1–8.

    Article  Google Scholar 

  17. Tatchell RJ. The ionic regulatory role of the salivary secretion of the cattle tick Boophilus microplus. J Insect Physiol. 1969;15(8):1421–30.

    Article  CAS  Google Scholar 

  18. Kaufman WR, Sauer JR. Chapter 7: ion and water balance in feeding ticks: mechanisms of tick excretion. In: Obenchain FD, Galun R, editors. Physiology of ticks. Oxford: Pergamon; 1982. pp. 213–44.

    Chapter  Google Scholar 

  19. Lees AD. The role of cuticle growth in the feeding process of ticks. Proc Zool Soc London. 1952;121:759–72.

    Article  Google Scholar 

  20. Hackman RH, Filshie BK. Chapter 1: the tick cuticle. In: Obenchain FD, Galun R, editors. Physiology of ticks. Oxford: Pergamon; 1982. pp. 1–42.

    Google Scholar 

  21. Kahl O, Hoff R, Knülle W. Gross morphological changes in the salivary glands of Ixodes ricinus (Acari: Ixodidae) between bloodmeals in relation to active uptake of atmospheric water. Exp Appl Acarol. 1990;9:239–58.

    Article  PubMed  CAS  Google Scholar 

  22. Belozerov VN. Chapter 13: diapause and biological rhythms in ticks. In: Obenchain FD, Galun R, editors. Physiology of ticks. Oxford: Pergamon; 1982. pp. 469–500.

    Chapter  Google Scholar 

  23. Gray JS, Kahl O, Lane RS, et al. Diapause in ticks of the medically important Ixodes ricinus species complex. Ticks Tick Borne Dis. 2016;7(5):992–1003.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Randolph S. The relative contribution of transovarial and transstadial transmission to the maintenance of tick-borne diseases. In: Axford JS, Rees DHE, editors. Lyme borreliosis. New York: Plenum; 1994. pp. 131–2.

    Chapter  Google Scholar 

  25. Chunikhin SP, Stefuktina LF, Korolev MB, et al. Sexual transmission of the tick-borne encephalitis virus in ixodid ticks (Ixodidae). Parazitologiia. 1983;17(3):214–7. in Russian.

    PubMed  CAS  Google Scholar 

  26. Randolph S. Epidemiological consequences of the ecological physiology of ticks. Adv In Insect Phys. 2009;37:297–339.

    Article  Google Scholar 

Download references

Acknowledgements

I appreciate useful discussions with Jeremy Gray (Dublin) and Hans Dautel (Berlin).

Funding

tick-radar GmbH has received support from Pfizer Deutschland GmbH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olaf Kahl.

Ethics declarations

Conflict of interest

O. Kahl is an unpaid member of the ESGBOR steering committee, the ESCMID study group for Lyme borreliosis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kahl, O. Hard ticks as vectors—some basic issues. Wien Klin Wochenschr 130, 479–483 (2018). https://doi.org/10.1007/s00508-018-1360-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00508-018-1360-x

Keywords

Navigation