Wiener klinische Wochenschrift

, Volume 130, Issue 17–18, pp 535–542 | Cite as

Austrian recommendations for the management of polycythemia vera

  • Sonja BurgstallerEmail author
  • Veronika Buxhofer-Ausch
  • Thamer Sliwa
  • Christine Beham-Schmid
  • Günther Gastl
  • Klaus Geissler
  • Thomas Melchardt
  • Maria Krauth
  • Peter Krippl
  • Andreas Petzer
  • Holger Rumpold
  • Albert Wölfler
  • Heinz Gisslinger
original article


Polycythemia vera (PV) is a clonal disease arising from hematopoietic stem cells. Erythrocytosis is the hallmark of the disease but leukocytosis, thrombocytosis and splenomegaly may also be present. Thromboembolic complications occur in about 20% of patients. Circulatory disturbances as well as pruritus represent frequent symptoms of the disease. Mutations in the JAK2 gene are present in 95% of patients in exon 14 (V617F) and in 3% in exon 12. The main goal of the treatment for patients with PV is the prevention of thromboembolic events, transformation to myelofibrosis and acute myeloid leukemia. Interferon alpha and hydroxyurea are used as first-line treatment for high risk patients. For patients unresponsive to first-line therapy ruxolitinib is available.


Polycythemia vera PV Management recommendations Risk stratification Treatment 



A single meeting for discussion of the final version of these recommendations was sponsored by Novartis Pharma GmbH and AOP Orphan Pharmaceuticals AG.

Conflict of interest

The following authors declare that they have served as consultants or received speakers fees from industrial companies: S. Burgstaller Novartis, AOP Orphan, K. Geissler Novartis, AOP Orphan, H. Gisslinger Novartis, AOP Orphan, Baxalta, Celgene, M. Krauth Novartis, AOP Orphan, A. Wölfler Novartis, AOP. V. Buxhofer-Ausch, T. Sliwa, C. Beham-Schmid, G. Gastl, T. Melchardt, P. Krippl, A. Petzer and H. Rumpold declare that they have no competing interests.


  1. 1.
    Tefferi A, Rumi E, Finazzi G, Gisslinger H, Vannucchi AM, Rodeghiero F, et al. Survival and prognosis among 1545 patients with contemporary polycythemia vera: an international study. Leukemia. 2013;27:1874–81.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Ania BJ, Suman VJ, Sobell JL, Codd MB, Silverstein MN, Melton LJ 3rd. Trends in the incidence of polycythemia vera among Olmsted County, Minnesota residents, 1935–1989. Am J Hematol. 1994;47:89–93.CrossRefPubMedGoogle Scholar
  3. 3.
    Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005;352:1779–90.CrossRefPubMedGoogle Scholar
  4. 4.
    Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocytemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005;7:387–97.CrossRefPubMedGoogle Scholar
  5. 5.
    James C, Ugo V, Le Couédic JP, Staerk J, Delhommeau F, Lacout C, et al. A unique clonal JAK2 mutation leading to constitutive signaling causes polycythemia vera. Nature. 2005;434:1144–8.CrossRefPubMedGoogle Scholar
  6. 6.
    Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. 2005;365:1054–61.CrossRefPubMedGoogle Scholar
  7. 7.
    Scott LM, Tong W, Levine RL, Scott MA, Beer PA, Stratton MR, et al. JAK2 eon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med. 2007;356:459–68.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Mullally A, Lane SW, Ball B, Megerdichian C, Okabe R, Al-Shahrour F, et al. Physiological Jak2V617F expression causes a lethal myeloproliferative neoplasm with differential effects on hematopoietic stem and progenitor cells. Cancer Cell. 2010;17:584–96.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hasan S, Lacout C, Marty C, Cuingnet M, Solary E, Vainchenker W, et al. JAK2V617F expression in mice amplifies early hematopoietic cells and gives them a competitive advantage that is hampered by IFN alpha. Blood. 2013;122:1464–77.CrossRefPubMedGoogle Scholar
  10. 10.
    Tiedt R, Hao-Shen H, Sobas MA, Looser R, Dirnhofer S, Schwaller J, et al. Ratio of mutant JAK2-V617F to wild-type Jak2 determines the MPD phenotypes in transgenic mice. Blood. 2008;111:3931–40.CrossRefPubMedGoogle Scholar
  11. 11.
    Grisouard J, Li S, Kubovcakaova L, Rao TN, Meyer SC, Lundberg P, et al. JAK2 exon 12 mutant mice display isolated erythrocytosis and changes in iron metabolism favoring increased erythropoiesis. Blood. 2016;128:839–51.CrossRefPubMedGoogle Scholar
  12. 12.
    Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009;114:937–51.CrossRefPubMedGoogle Scholar
  13. 13.
    Tefferi A, Lasho TL, Gugioelmelli P, Finke CM, Totunno G, Elala Y, et al. Targeted deep sequencing in polycythemia vera and essential thrombocythemia. Blood Adv. 2016;1:21–30.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Siegel FP, Tauscher J, Petrides PE. Aquagenic pruritus in polycythemia vera: characteristics and influence on quality of life in 441 patients. Am J Hematol. 2013;88:665–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Michiels JJ. Erythromelalgia and vascular complications in polycythemia vera. Semin Thromb Hemost. 1997;23:441–54.CrossRefPubMedGoogle Scholar
  16. 16.
    Torgano G, Mandelli C, Massaro P, Abbiati C, Ponzetto A, Bertinieri G, et al. Gastroduodenal lesions in polycythemia vera: frequency and role of Helicobacter pylori. Br J Haematol. 2002;117:198–202.CrossRefPubMedGoogle Scholar
  17. 17.
    Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391–405.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Barbui T, Thiele J, Gisslinger H, Finazzi G, Carobbio A, Rumi E, et al. Masked polycythemia vera (mPV): results of an international study. Am J Hematol. 2014;89:52–4.CrossRefPubMedGoogle Scholar
  19. 19.
    Lussana F, Carobbio A, Randi ML, Rumi EC, Finazzi G, et al. A lower intensity of treatment may underlie the increased risk of thrombosis in young patients with masked polycythemia vera. Br J Haematol. 2014;167:541–6.CrossRefPubMedGoogle Scholar
  20. 20.
    Barbui T, Thiele J, Passamonti F, Rumi E, Boveri E, Randi ML, et al. Initial bone marrow reticulin fibrosis in polycythemia vera exerts an impact on clinical outcome. Blood. 2012;119:2239–41.CrossRefPubMedGoogle Scholar
  21. 21.
    Berlin NI. Diagnosis and classification of the polycythemias. Semin Hematol. 1975;12:339–51.PubMedGoogle Scholar
  22. 22.
    Barbui T, Barosi G, Birgegard G, Cervantes F, Finazzi G, Griesshammer M, et al. Philadelphia-negative classical myeloproliferative neoplasms: critical concepts and management recommendations from European LeukemiaNet. J Clin Oncol. 2011;29:761–70.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Passamonti F, Rumi E, Pietra D, Elena C, Boveri E, Arcaini L, et al. A prospective study of 338 patients with polycythemia vera: the impact of JAK2 (V617F) allele burden and leukocytosis on fibrotic or leukemic disease transformation and vascular complications. Leukemia. 2010;24:1574–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Marchioli R, Finazzi G, Specchia G, Cacciola R, Cavazzina R, Cilloni D, et al. Cardiovascular events and intensity of treatment of polycythemia vera. N Engl J Med. 2013;368:22–33.CrossRefPubMedGoogle Scholar
  25. 25.
    Berk PD, Goldberg JD, Silverstein MN, Weinfeld A, Donovan PB, Ellis JT, et al. Increased incidence of acute leukemia in polycythemia vera associated with chlorambucil treatment. N Engl J Med. 1981;304:441–7.CrossRefPubMedGoogle Scholar
  26. 26.
    Landolfi R, Marchioli R, Kutti J, Gisslinger H, Tognoni G, Patrono C, et al. Efficacy and safety of low-dose aspirin in polycythemia vera. N Engl J Med. 2004;350:114–24.CrossRefPubMedGoogle Scholar
  27. 27.
    Michiels JJ, Berneman Z, Schroyens W, Koudstaal PJ, Lindemans J, Nemann HA, et al. Platelet-mediated erythromelalgia, cerebral, ocular and coronary microvascular ischemic and thrombotic manifestations in patients with essential thrombocythemia and polycythemia vera: Platelets. 2006;17:528–44. a distinct aspirin-responsive and coumadin-resistant arterial thrombophilia.CrossRefPubMedGoogle Scholar
  28. 28.
    Passamonti F, Rumi E, Randi ML, Morra E, Cazzola M. Aspirin in pregnant patients with essential thrombocythemia: a retrospective analysis of 129 pregnancies. J Thromb Haemost. 2010;8:411–3.CrossRefPubMedGoogle Scholar
  29. 29.
    Kiladjian JJ, Mesa RA, Hoffman R. The renaissance of interferon therapy for the treatment of myeloid malignancies. Blood. 2011;117:4706–15.CrossRefPubMedGoogle Scholar
  30. 30.
    Kiladjian JJ, Cassinat B, Chevret S, Turlurle P, Cambier N, Roussel M, et al. Pegylated interferon-alfa-2a induces complete hematologic and molecular responses with low toxicity in polycythemia vera. Blood. 2008;112:3065–72.CrossRefPubMedGoogle Scholar
  31. 31.
    Quintas-Cardama A, Kantarjian H, Manshuouri T, Luthra R, Estrov Z, Pierce S, et al. Pegylated interferon alfa-2a yields high rates of hematologic and molecular response in patients with advanced essential thrombocythemia and polycythemia vera. J Clin Oncol. 2009;27:5418–24.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Gisslinger H, Zagrijtschuk O, Buxhofer-Ausch V, Thaler J, Schloegl E, Gastl GA, et al. Ropeginterferon alfa-2b, a novel IFN alfa-2b, induces high response rates with low toxicity in patients with polycythemia vera. Blood. 2015;126:1762–9.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Gisslinger H, Klade C, Georgiev P, Krochmalczyk D, Gercheva L, Egyed M, et al. Ropeginterferon alfa-2b induces high rates of clinical, hematological and molecular responses in polycythemia vera: two-year results from the first prospective randomized controlled trial. Blood. 2017;130:320.Google Scholar
  34. 34.
    Najean Y, Rain J‑D. Treatment of polycythemia vera: the use of hydroxyurea and pipobroman in 292 patients under the age of 65 years. Blood. 1997;90:3370–7.PubMedGoogle Scholar
  35. 35.
    Kiladjian JJ, Chevret S, Dosquet C, Chomienne C, Rain J‑D. Treatment of polycythemia vera with Hydroxyurea and Pipibroman: final results of a randomized trial initiated in 1980. J Clin Oncol. 2011;29:3907–13.CrossRefPubMedGoogle Scholar
  36. 36.
    Alvarez-Larran A, Kerguelen A, Hernandez-Boluda JC, Perez-Encinas M, Ferrer-Marin F, Barez A, et al. Frequency and prognostic value of resistance/intolerance to hydroxycarbamide in 890 patients with polycythemia vera. Br J Haematol. 2016;172:786–93.CrossRefPubMedGoogle Scholar
  37. 37.
    Antonioli E, Gugliemelli P, Pieri L, Finazzi M, Rumi E, Martinelli V, et al. Hydroxyurea-related toxicity in 3411 patients with Ph-negative MPN. Am J Hematol. 2012;87:552–4.CrossRefPubMedGoogle Scholar
  38. 38.
    Latagliata R, Spadea A, Cedrone M, Ki Giandonenico J, De Muro M, Villivà N, et al. Symptomatic mucocutaneous toxicity of hydroxyurea in Philadelphia chromosome-negative myeloproliferative neoplasms: the mister Hyde face of a sage drug. Cancer. 2012;118:404–9.CrossRefPubMedGoogle Scholar
  39. 39.
    Verstovsek S, Passamonti F, Rambaldi A, Barosi G, Rosen PJ, Rumi E, et al. A phase 2 study of Ruxolitinib, an oral JAK1 and JAK2 inhibitor, in patients with advanced polycythemia vera who are refractory or intolerant to hydroxyurea. Cancer. 2014;120:513–20.CrossRefPubMedGoogle Scholar
  40. 40.
    Vanucchi AM, Kiladjian JJ, Griesshammer M, Masszi T, Durrant S, Passamonti F, et al. Ruxolitinib versus standard therapy for the treatment of polycythemia vera. N Engl J Med. 2015;372:426–35.CrossRefGoogle Scholar
  41. 41.
    Passamonti F, Griesshammer M, Palandri F, Egyed M, Benevolo G, Devos T, et al. Ruxolitinib for the treatment of inadequately controlled polycythemia vera without splenomegaly (RESPONSE-2): a randomized, open-label, phase 3b study. Lancet Oncol. 2017;18:88–99.CrossRefPubMedGoogle Scholar
  42. 42.
    Vanucchi AM, Verstovsek S, Gugliemelli P, Griesshammer M, Burn TC, Naim A, et al. Ruxolitnib reduces JAK2p.V617F allele burden in patients with polycythemia vera enrolled in the RESPONSE study. Ann Hematol. 2017;96:1113–20.CrossRefGoogle Scholar
  43. 43.
    Heine A, Brossart P, Wolf D. Ruxolitnibis a potent immunosuppressive compound: is it time for anti-infective prophylaxis? Blood. 2013;122:3843–4.CrossRefPubMedGoogle Scholar
  44. 44.
    Elliott MA, Tefferi A. Thrombosis and haemorrhage in polycythemia vera and essential thrombocythaemia. Br J Haematol. 2005;128:275–90.CrossRefPubMedGoogle Scholar
  45. 45.
    Smalberg JH, Arends LR, Valla DC, Kiladjian JJ, Janssen HL, Leebeek FW. Myeloproliferative neoplasms in Budd-Chiari syndrome and portal vein thrombosis: a meta-analysis. Blood. 2012;120:4921–8.CrossRefPubMedGoogle Scholar
  46. 46.
    Mancuso A. An update on the management of Budd-Chiari-syndrome: the issues of timing and choice of treatment. Eur J Gastroenterol Hepatol. 2015;27:200–3.CrossRefPubMedGoogle Scholar
  47. 47.
    De Stefano V, Qi X, Betti S, Rossi E. Splanchnic vein thrombosis and myeloproliferative neoplasms: molecular-driven diagnosis and long-term treatment. Thromb Haemost. 2016;115:240–9.CrossRefPubMedGoogle Scholar
  48. 48.
    Griesshammer M, Struve S, Barbui T. Management of Philadelphia negative chronic myeloproliferative disorders in pregnancy. Blood Rev. 2008;22:235–45.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Sonja Burgstaller
    • 1
    Email author
  • Veronika Buxhofer-Ausch
    • 2
  • Thamer Sliwa
    • 3
  • Christine Beham-Schmid
    • 4
  • Günther Gastl
    • 5
  • Klaus Geissler
    • 6
  • Thomas Melchardt
    • 7
  • Maria Krauth
    • 8
  • Peter Krippl
    • 9
  • Andreas Petzer
    • 10
  • Holger Rumpold
    • 11
  • Albert Wölfler
    • 12
  • Heinz Gisslinger
    • 13
  1. 1.Department of Internal Medicine IVKlinikum Wels-GrieskirchenWelsAustria
  2. 2.Department of Internal Medicine IOrdensklinikum Linz ElisabethinenLinzAustria
  3. 3.3rd Medical DepartmentHanusch HospitalViennaAustria
  4. 4.Institute of PathologyMedical University GrazGrazAustria
  5. 5.Division of Hematology and OncologyInnsbruck Medical UniversityInnsbruckAustria
  6. 6.5th Medical Department with Hematology, Oncology and Palliative MedicineHospital HietzingViennaAustria
  7. 7.3rd Medical Department with Hematology and Medical Oncology, Hemostaseology, Rheumatology and Infectiology, Laboratory for Immunological and Molecular Cancer ResearchParacelsus Medical University Hospital SalzburgSalzburgAustria
  8. 8.Department of Internal Medicine I, Division of Hematology and Blood CoagulationMedical University of ViennaViennaAustria
  9. 9.Department of Internal Medicine with Hematology and OncologySteiermärkische Krankenanstaltengesellschaft m. b. H. Krankenhausverbund Feldbach-FürstenfeldFürstenfeldAustria
  10. 10.Department of Internal Medicine IOrdensklinikum Barmherzige SchwesternLinzAustria
  11. 11.Department of Internal Medicine IILandeskrankenhaus FeldkirchFeldkirchAustria
  12. 12.Division of HematologyMedical University of GrazGrazAustria
  13. 13.Department of Internal Medicine I, Division of Hematology and Blood CoagulationMedical University of ViennaViennaAustria

Personalised recommendations