Skip to main content
Log in

P4 medicine and osteoporosis: a systematic review

  • geriatrics: at crossroads of medicine
  • Published:
Wiener klinische Wochenschrift Aims and scope Submit manuscript

Summary

Background

Osteoporosis is the most frequent bone metabolic disease. In order to improve early detection, prediction, prevention, diagnosis, and treatment of the disease, a new model of P4 medicine (personalized, predictive, preventive, and participatory medicine) could be applied. The aim of this work was to systematically review the publications of four different types of “omics” studies related to osteoporosis, in order to discover novel predictive, preventive, diagnostic, and therapeutic targets for better management of the geriatric population.

Methods

To systematically search the PubMed database, we created specific groups of criteria for four different types of “omics” information on osteoporosis: genomic, transcriptomic, proteomic, and metabolomic. We then analyzed the intersections between them in order to find correlations and common pathways or molecules with important roles in osteoporosis, and with a potential application in disease prediction, prevention, diagnosis, or treatment.

Results

Altogether, 180 publications of “omics” studies in the field of osteoporosis were found and reviewed at first selection. After introducing the inclusion and exclusion criteria (the secondary selection), 46 papers were included in the systematic review.

Conclusions

The intersection of reviewed papers identified five genes (ESR1, IBSP, CTNNB1, SOX4, and IDUA) and processes like the Wnt pathway, JAK/STAT signaling, and ERK/MAPK, which should be further validated for their predictive, diagnostic, or other clinical value in osteoporosis. Such molecular insights will enable us to fit osteoporosis into the P4 strategy and could increase the effectiveness of disease prediction and prevention, with a decrease in morbidity in the geriatric population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Košnik MMF, Štajer D, Koželj M, Černelč P. Interna medicina, 4th ed. Ljubljana: Littera picta; 2011.

    Google Scholar 

  2. Mafi Golchin M, Heidari L, Ghaderian SM, Akhavan-Niaki H. Osteoporosis: a silent disease with complex genetic contribution. J Genet Genomics. 2016;43(2):49–61.

    Article  PubMed  Google Scholar 

  3. Hui SL, Slemenda CW, Johnston CC Jr.. Age and bone mass as predictors of fracture in a prospective study. J Clin Invest. 1988;81(6):1804–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. De Laet C, Kanis JA, Oden A, Johanson H, Johnell O, Delmas P, et al. Body mass index as a predictor of fracture risk: a meta-analysis. Osteoporos Int. 2005;16(11):1330–8.

    Article  PubMed  Google Scholar 

  5. Klotzbuecher CM, Ross PD, Landsman PB, Abbott TA, Berger M. Patients with prior fractures have an increased risk of future fractures: a summary of the literature and statistical synthesis. J Bone Miner Res. 2000;15(4):721–39.

    Article  CAS  PubMed  Google Scholar 

  6. Kanis JA, Johnell O, Oden A, Johansson H, De Laet C, Eisman JA, et al. Smoking and fracture risk: a meta-analysis. Osteoporos Int. 2005;16(2):155–62.

    Article  CAS  PubMed  Google Scholar 

  7. Kanis JA, Johansson H, Johnell O, Oden A, De Laet C, Eisman JA, et al. Alcohol intake as a risk factor for fracture. Osteoporos Int. 2005;16(7):737–42.

    Article  PubMed  Google Scholar 

  8. Kanis JA, Johansson H, Oden A, Johnell O, de Laet C, Melton IL, et al. A meta-analysis of prior corticosteroid use and fracture risk. J Bone Miner Res. 2004;19(6):893–9.

    Article  PubMed  Google Scholar 

  9. Ugurlu U, Nayki U, Nayki C, Ulug P, Kulhan M, Yildirim Y. Assessment of smoking for low bone mineral density in postmenopausal Turkish women. Wien Klin Wochenschr. 2016;128(3):114–9.

    Article  CAS  PubMed  Google Scholar 

  10. Hood L, Rowen L, Galas DJ, Aitchison JD. Systems biology at the Institute for Systems Biology. Brief Funct Genomic Proteomic. 2008;7(4):239–48.

    Article  CAS  PubMed  Google Scholar 

  11. Sobradillo P, Pozo F, Agusti A. P4 medicine: the future around the corner. Arch Bronconeumol. 2011;47(1):35–40.

    Article  PubMed  Google Scholar 

  12. Younesi E, Hofmann-Apitius M. From integrative disease modeling to predictive, preventive, personalized and participatory (P4) medicine. EPMA J. 2013;4(1):23.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Flores M, Glusman G, Brogaard K, Price ND, Hood L. P4 medicine: how systems medicine will transform the healthcare sector and society. Per Med. 2013;10(6):565–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. National Research Council (US) Committee on A Framework for Developing a New Taxonomy of Disease. Toward precision medicine: building a knowledge network for biomedical research and a new taxonomy of disease. Washington DC: National Academies Press; 2011.

    Google Scholar 

  15. Hood L, Flores M. A personal view on systems medicine and the emergence of proactive P4 medicine: predictive, preventive, personalized and participatory. N Biotechnol. 2012;29(6):613–24.

    Article  CAS  PubMed  Google Scholar 

  16. David JG, Leroy H. Systems biology and emerging technologies will catalyze the transition from reactive medicine to predictive, personalized, preventive and participatory (P4) medicine. Interdiscipl Bio Cent. 2009;1:6.

    Article  Google Scholar 

  17. Hood L. Systems biology and p4 medicine: past, present, and future. Rambam Maimonides Med J. 2013;4(2):e0012.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hood L, Balling R, Auffray C. Revolutionizing medicine in the 21st century through systems approaches. Biotechnol J. 2012;7(8):992–1001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Estrada K, Styrkarsdottir U, Evangelou E, Hsu YH, Duncan EL, Ntzani EE, et al. Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat Genet. 2012;44(5):491–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Guo Y, Tan LJ, Lei SF, Yang TL, Chen XD, Zhang F, et al. Genome-wide association study identifies ALDH7A1 as a novel susceptibility gene for osteoporosis. PLOS Genet. 2010;6(1):e1000806.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Rivadeneira F, Styrkarsdottir U, Estrada K, Halldorsson BV, Hsu YH, Richards JB, et al. Twenty bone-mineral-density loci identified by large-scale meta-analysis of genome-wide association studies. Nat Genet. 2009;41(11):1199–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Duncan EL, Danoy P, Kemp JP, Leo PJ, McCloskey E, Nicholson GC, et al. Genome-wide association study using extreme truncate selection identifies novel genes affecting bone mineral density and fracture risk. PLOS Genet. 2011;7(4):e1001372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang L, Choi HJ, Estrada K, Leo PJ, Li J, Pei YF, et al. Multistage genome-wide association meta-analyses identified two new loci for bone mineral density. Hum Mol Genet. 2014;23(7):1923–33.

    Article  CAS  PubMed  Google Scholar 

  24. Styrkarsdottir U, Halldorsson BV, Gretarsdottir S, Gudbjartsson DF, Walters GB, Ingvarsson T, et al. Multiple genetic loci for bone mineral density and fractures. N Engl J Med. 2008;358(22):2355–65.

    Article  CAS  PubMed  Google Scholar 

  25. Guo Y, Zhang LS, Yang TL, Tian Q, Xiong DH, Pei YF, et al. IL21R and PTH may underlie variation of femoral neck bone mineral density as revealed by a genome-wide association study. J Bone Miner Res. 2010;25(5):1042–8.

    CAS  PubMed  Google Scholar 

  26. Kung AW, Xiao SM, Cherny S, Li GH, Gao Y, Tso G, et al. Association of JAG1 with bone mineral density and osteoporotic fractures: a genome-wide association study and follow-up replication studies. Am J Hum Genet. 2010;86(2):229–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Richards JB, Rivadeneira F, Inouye M, Pastinen TM, Soranzo N, Wilson SG, et al. Bone mineral density, osteoporosis, and osteoporotic fractures: a genome-wide association study. Lancet. 2008;371(9623):1505–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Styrkarsdottir U, Halldorsson BV, Gretarsdottir S, Gudbjartsson DF, Walters GB, Ingvarsson T, et al. New sequence variants associated with bone mineral density. Nat Genet. 2009;41(1):15–7.

    Article  CAS  PubMed  Google Scholar 

  29. Zheng HF, Duncan EL, Yerges-Armstrong LM, Eriksson J, Bergstrom U, Leo PJ, et al. Meta-analysis of genome-wide studies identifies MEF2C SNPs associated with bone mineral density at forearm. J Med Genet. 2013;50(7):473–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Guo Y, Wang JT, Liu H, Li M, Yang TL, Zhang XW, et al. Are bone mineral density loci associated with hip osteoporotic fractures? A validation study on previously reported genome-wide association loci in a Chinese population. Genet Mol Res. 2012;11(1):202–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xiao SM, Kung AW, Gao Y, Lau KS, Ma A, Zhang ZL, et al. Post-genome wide association studies and functional analyses identify association of MPP7 gene variants with site-specific bone mineral density. Hum Mol Genet. 2012;21(7):1648–57.

    Article  CAS  PubMed  Google Scholar 

  32. Styrkarsdottir U, Thorleifsson G, Gudjonsson SA, Sigurdsson A, Center JR, Lee SH, et al. Sequence variants in the PTCH1 gene associate with spine bone mineral density and osteoporotic fractures. Nat Commun. 2016;7:10129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Paternoster L, Lorentzon M, Vandenput L, Karlsson MK, Ljunggren O, Kindmark A, et al. Genome-wide association meta-analysis of cortical bone mineral density unravels allelic heterogeneity at the RANKL locus and potential pleiotropic effects on bone. PLOS Genet. 2010;6(11):e1001217.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Trost Z, Trebse R, Prezelj J, Komadina R, Logar DB, Marc J. A microarray based identification of osteoporosis-related genes in primary culture of human osteoblasts. Bone. 2010;46(1):72–80.

    Article  CAS  PubMed  Google Scholar 

  35. Mak YT, Hampson G, Beresford JN, Spector TD. Variations in genome-wide gene expression in identical twins – a study of primary osteoblast-like culture from female twins discordant for osteoporosis. BMC Genet. 2004;5:14.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hopwood B, Tsykin A, Findlay DM, Fazzalari NL. Gene expression profile of the bone microenvironment in human fragility fracture bone. Bone. 2009;44(1):87–101.

    Article  CAS  PubMed  Google Scholar 

  37. Liu YZ, Dvornyk V, Lu Y, Shen H, Lappe JM, Recker RR, et al. A novel pathophysiological mechanism for osteoporosis suggested by an in vivo gene expression study of circulating monocytes. J Biol Chem. 2005;280(32):29011–6.

    Article  CAS  PubMed  Google Scholar 

  38. Chen XD, Xiao P, Lei SF, Liu YZ, Guo YF, Deng FY, et al. Gene expression profiling in monocytes and SNP association suggest the importance of the STAT1 gene for osteoporosis in both Chinese and Caucasians. J Bone Miner Res. 2010;25(2):339–55.

    Article  CAS  PubMed  Google Scholar 

  39. Liu YZ, Zhou Y, Zhang L, Li J, Tian Q, Zhang JG, et al. Attenuated monocyte apoptosis, a new mechanism for osteoporosis suggested by a transcriptome-wide expression study of monocytes. PLOS ONE. 2015;10(2):e0116792.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Xiao P, Chen Y, Jiang H, Liu YZ, Pan F, Yang TL, et al. In vivo genome-wide expression study on human circulating B cells suggests a novel ESR1 and MAPK3 network for postmenopausal osteoporosis. J Bone Miner Res. 2008;23(5):644–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen Y, Xia RG. Screening and functional microarray analysis of differentially expressed genes related to osteoporosis. Genet Mol Res. 2014;13(2):3228–36.

    Article  CAS  PubMed  Google Scholar 

  42. Yan B, Li J, Zhang L. Identification of B cells participated in the mechanism of postmenopausal women osteoporosis using microarray analysis. Int J Clin Exp Med. 2015;8(1):1027–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Ma M, Chen X, Lu L, Yuan F, Zeng W, Luo S, et al. Identification of crucial genes related to postmenopausal osteoporosis using gene expression profiling. Aging Clin Exp Res. 2015; doi:10.1007/s40520-015-0509-y.

    Google Scholar 

  44. Liu L, Zhu Q, Wang J, Xi Q, Zhu H, Gu M. Gene expression changes in human mesenchymal stem cells from patients with osteoporosis. Mol Med Rep. 2015;12(1):981–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhou Z, Gao M, Liu Q, Tao MD. Comprehensive transcriptome analysis of mesenchymal stem cells in elderly patients with osteoporosis. Aging Clin Exp Res. 2015;27(5):595–601.

    Article  PubMed  Google Scholar 

  46. Xie W, Ji L, Zhao T, Gao P. Identification of transcriptional factors and key genes in primary osteoporosis by DNA microarray. Med Sci Monit. 2015;21:1333–44.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wu X, Guo S, Shen G, Ma X, Tang C, Xie K, et al. Screening of osteoprotegerin-related feature genes in osteoporosis and functional analysis with DNA microarray. Eur J Med Res. 2013;18:15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wen Y, Guo X, Hao J, Xiao X, Wang W, Wu C, et al. Integrative analysis of genome-wide association studies and gene expression profiles identified candidate genes for osteoporosis in Kashin-Beck disease patients. Osteoporos Int. 2016;27(3):1041–6.

    Article  CAS  PubMed  Google Scholar 

  49. Zhang Y, Wang N, Ma J, Chen XC, Li Z, Zhao W. Expression profile analysis of new candidate genes for the therapy of primary osteoporosis. Eur Rev Med Pharmacol Sci. 2016;20(3):433–40.

    CAS  PubMed  Google Scholar 

  50. Pineda B, Serna E, Laguna-Fernandez A, Noguera I, Panach L, Hermenegildo C, et al. Gene expression profile induced by ovariectomy in bone marrow of mice: a functional approach to identify new candidate genes associated to osteoporosis risk in women. Bone. 2014;65:33–41.

    Article  CAS  PubMed  Google Scholar 

  51. He H, Cao S, Niu T, Zhou Y, Zhang L, Zeng Y, et al. Network-based meta-analyses of associations of multiple gene expression profiles with bone mineral density variations in women. PLOS ONE. 2016;11(1):e0147475.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Deng FY, Liu YZ, Li LM, Jiang C, Wu S, Chen Y, et al. Proteomic analysis of circulating monocytes in Chinese premenopausal females with extremely discordant bone mineral density. Proteomics. 2008;8(20):4259–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Daswani B, Gupta MK, Gavali S, Desai M, Sathe GJ, Patil A, et al. Monocyte proteomics reveals involvement of phosphorylated HSP27 in the pathogenesis of osteoporosis. Dis Markers. 2015;2015:196589. doi:10.1155/2015/196589.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Zhang L, Liu YZ, Zeng Y, Zhu W, Zhao YC, Zhang JG, et al. Network-based proteomic analysis for postmenopausal osteoporosis in Caucasian females. Proteomics. 2016;16(1):12–28.

    Article  CAS  PubMed  Google Scholar 

  55. Zeng Y, Zhang L, Zhu W, Xu C, He H, Zhou Y, et al. Quantitative proteomics and integrative network analysis identified novel genes and pathways related to osteoporosis. J Proteomics. 2016;142:45–52.

    Article  CAS  PubMed  Google Scholar 

  56. Qundos U, Drobin K, Mattsson C, Hong MG, Sjoberg R, Forsstrom B, et al. Affinity proteomics discovers decreased levels of AMFR in plasma from Osteoporosis patients. Proteomics Clin Appl. 2016;10(6):681–90.

    Article  CAS  PubMed  Google Scholar 

  57. Fan Y, Liu J, Wang S, Wang H, Shi F, Xiong L, et al. Functional proteome of bones in rats with osteoporosis following ovariectomy. Life Sci. 2005;76(25):2893–901.

    Article  CAS  PubMed  Google Scholar 

  58. You YS, Lin CY, Liang HJ, Lee SH, Tsai KS, Chiou JM, et al. Association between the metabolome and low bone mineral density in Taiwanese women determined by (1)H NMR spectroscopy. J Bone Miner Res. 2014;29(1):212–22.

    Article  CAS  PubMed  Google Scholar 

  59. Qi H, Bao J, An G, Ouyang G, Zhang P, Wang C, et al. Association between the metabolome and bone mineral density in pre- and post-menopausal Chinese women using GC-MS. Mol Biosyst. 2016;12(7):2265–75. doi:10.1039/c6mb00181e.

    Article  CAS  PubMed  Google Scholar 

  60. Ma B, Liu J, Zhang Q, Ying H, Jiye A, Sun J, et al. Metabolomic profiles delineate signature metabolic shifts during estrogen deficiency-induced bone loss in rat by GC-TOF/MS. PLOS ONE. 2013;8(2):e54965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Liu X, Liu Y, Cheng M, Zhang X, Xiao H. A metabolomics study of the inhibitory effect of 17-beta-estradiol on osteoclast proliferation and differentiation. Mol Biosyst. 2015;11(2):635–46.

    Article  CAS  PubMed  Google Scholar 

  62. NCBI. SMG6, nonsense mediated mRNA decay factor Gene ID: 23293 2016. https://www.ncbi.nlm.nih.gov/gene/23293. Accessed 26 June 2016.

    Google Scholar 

  63. Moore SC, Matthews CE, Sampson JN, Stolzenberg-Solomon RZ, Zheng W, Cai Q, et al. Human metabolic correlates of body mass index. Metabolomics. 2013;10(2):259–69.

    PubMed Central  Google Scholar 

  64. NCBI. ESR1 estrogen receptor 1 (Homo sapiens [human]), Gene ID: 2099 2016. http://www.ncbi.nlm.nih.gov/gene/2099. Accessed 21 June 2016.

    Google Scholar 

  65. NCBI IBSP integrin binding sialoprotein (Homo sapiens [human]) Gene ID: 3381 2008. https://www.ncbi.nlm.nih.gov/gene/?term=3381. Accessed 26 June 2016.

  66. NCBI. CTNNB1 catenin beta 1 (Homo sapiens [human]) Gene ID: 1499 2009. https://www.ncbi.nlm.nih.gov/gene?Db=gene&Cmd=DetailsSearch&Term=1499. Accessed 28 June 2016.

  67. NCBI SOX4 SRY-box 4 (Homo sapiens [human]) Gene ID: 6659 2008. https://www.ncbi.nlm.nih.gov/gene?Db=gene&Cmd=DetailsSearch&Term=6659. Accessed 28 June 2016.

  68. NCBI IDUA iduronidase, alpha-L- (Homo sapiens [human]) Gene ID: 3425 2008. https://www.ncbi.nlm.nih.gov/gene?Db=gene&Cmd=DetailsSearch&Term=3425. Accessed 28 June 2016.

Download references

Acknowledgement

The study was financially supported by the Slovenian Research Agency (J3-7245, P3-298, and MR38167).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janja Marc EuSpLM.

Ethics declarations

Conflict of interest

K. Kodrič, K. Čamernik, D. Černe, R. Komadina, and J. Marc declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kodrič, K., Čamernik, K., Černe, D. et al. P4 medicine and osteoporosis: a systematic review. Wien Klin Wochenschr 128 (Suppl 7), 480–491 (2016). https://doi.org/10.1007/s00508-016-1125-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00508-016-1125-3

Keywords

Navigation