Skip to main content
Log in

The medical and scientific responsibility of pollen information services

  • short report
  • Published:
Wiener klinische Wochenschrift Aims and scope Submit manuscript

Summary

Pollen information as such is highly valuable and was considered so far as a self-evident good free for the public. The foundation for reliable and serious pollen information is the careful, scientific evaluation of pollen content in the air. However, it is essential to state and define now the requirements for pollen data and qualifications needed for institutions working with pollen data in the light of technical developments such as automated pollen counting and various political interests in aerobiology including attempts to finally acknowledge pollen and spores as relevant biological particles in the air worth being considered for pollution and health directives. It has to be emphasized that inadequate pollen forecasts are a considerable health risk for pollen allergy sufferers. Therefore, the responsibility of institutions involved in pollen monitoring and forecasting is high and should be substantiated with respective qualifications and know-how. We suggest here for the first time a portfolio of quality criteria and demand rigorous scientific monitoring and certification of such institutions in the interest and for the protection of persons affected by a pollen allergy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Asher MI, Montefort S, Bjorksten B, Lai CK, Strachan DP, Weiland SK, Williams H, ISAAC Phase Three Study Group. Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC phases one and three repeat multicountry cross-sectional surveys. Lancet. 2006;368:733–43.

    Article  PubMed  Google Scholar 

  2. Bastl K, Kmenta M, Pessi AM, Prank M, Saarto A, Sofiev M, Bergmann KC, Buters JTM, Thibaudon M, Jäger S, Berger U. First comparison of allergen content (Bet v 1 and Phl p 5 measurements) with symptom and pollen data from four European regions during 2009–2011. Sci Total Environ. 2016; doi:10.1016/j.scitotenv.2016.01.014.

    Google Scholar 

  3. Bastl K, Kmenta M, Berger U. Unusually early flowering of alder in Austria: first report of Alnus x spaethii in Austria, combined LM and SEM study of alder species and impact on pollen allergy sufferers. Aerobiologia (Bologna). 2015; doi:10.1007/s10453-015-9383-5.

    Google Scholar 

  4. Bastl K, Kmenta M, Jäger S, Bergmann KC, EAN, Berger U. Development of a symptom load index: enabling temporal and regional pollen season comparisons and pointing out the need for personalized pollen information. Aerobiologia (Bologna). 2014;30:269–80.

    Article  Google Scholar 

  5. Berger U, Karatzas K, Jaeger S, Voukantsis D, Sofiev M, Brandt O, Zuberbier T, Bergmann KC. Personalized pollen-related symptom-forecast information services for allergic rhinitis patients in Europe. Allergy. 2013;68:963–5. doi:10.1111/all.12181.

    Article  CAS  PubMed  Google Scholar 

  6. Bergmann KC, Heinrich J, Niemann H. Current status of allergy prevalence in Germany. Position paper of the Environmental Medicine Commission of the Robert Koch Institute. Allergo J Int. 2016;25:6–10. doi:10.1007/s40629-016-0089-1.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bousquet J, Anto J, Auffray C, Akdis M, Cambon-Thomsen A, Keil T, et al. MeDALL (Mechanisms of the Development of ALLergy): an integrated approach from phenotypes to systems medicine. Allergy. 2011;66:596–604.

    Article  CAS  PubMed  Google Scholar 

  8. Crouzy B, Stella M, Konzelmann T, Calpini B, Clot B. All-optical automatic pollen identification: Towards an operational system. Atmos Environ. 2016;140:202–12.

    Article  CAS  Google Scholar 

  9. Dajoz I. The distribution of pollen heteromorphism in Viola: ecological and morphological correlates. Evol Ecol Res. 1999;1:97–109.

    Google Scholar 

  10. D’Amato G, Cecchi L, Bonini S, Nunes C, Annesi-Maesano I, Behrendt H, Liccardi G, Popov T, van Cauwenberge P. Allergenic pollen and pollen allergy in Europe. Allergy. 2007;62:976–90.

    Article  PubMed  Google Scholar 

  11. Ejsmond MJ, Wrońska-Pilarek D, Ejsmond A, Dragosz-Kluska D, Karpińska-Kołaczek M, Kozłowski J. Does climate affect pollen morphology? Optimal size and shape of pollen grains under various desiccation intensity. Ecosphere. 2011;2:117.

    Article  Google Scholar 

  12. Fenner M. The phenology of growth and reproduction in plants. Perspect Plant Ecol Evol Syst. 1998;1(1):78–91.

    Article  Google Scholar 

  13. Galán C, Alcazar-Teno P, Dominguez Vilches E, de la Villamandos Torre F, Garcia-Pantaleon FI. Airborne pollen grain concentrations at two different heights. Aerobiologia (Bologna). 1995;11:105–9.

    Article  Google Scholar 

  14. Galán C, Smith M, Thibaudon M, Frenguelli G, Oteros J, Gehrig R, Berger U, Clot B, Brandao R, EAS QC Working Group. Pollen monitoring: minimum requirements and reproducibility of analysis. Aerobiologia (Bologna). 2014; doi:10.1007/s10453-014-9335-5.

    Google Scholar 

  15. Hemmer W, Schauer U, Trinca A‑M, Neumann C. Endbericht 2009 zur Studie: Prävalenz der Ragweedpollen-Allergie in Ostösterreich. St. Pölten: Amt der NÖ Landesregierung, Landesamtsdirektion, Abteilung Gebäudeverwaltung, Amtsdruckerei; 2010, pp 1–52.

    Google Scholar 

  16. Hirst JM. An automatic volumetric spore trap. Ann Appl Biol. 1952;39:257–65.

    Article  Google Scholar 

  17. Høegh Berdahl M. Pollen analysis by FTIR spectroscopy – a feasibility study for an automated method. Ås: Norwegian University of Life Sciences; 2014, p 79.

    Google Scholar 

  18. Holt KA, Bennett KD. Principles and methods for automated palynology. New Phytol. 2014;203(3):735–42. doi:10.1111/nph.12848.

    Article  CAS  PubMed  Google Scholar 

  19. Wetzlar H. Pollen Monitor BAA500. Datasheet 2016. http://www.hund.de/images/pdf/Datasheet_BAA_english_12.03.09.pdf. Accessed 14 Apr 2016.

    Google Scholar 

  20. Jäger S, Mandroli P, Spieksma F, Emberlin J, Hjelmroos M, Rantio-Lehtimaki A, et al. News. Aerobiologia (Bologna). 1995;11:69–70.

    Article  Google Scholar 

  21. Kiotseridis H, Cilio CM, Bjermer L, Tunsa¨ter A, Jacobsson H, Dahl A. Grass pollen allergy in children and adolescents-symptoms, health related quality of life and the value of pollen prognosis. Clin Transl Allergy. 2013;3:19.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kmenta M, Zetter R, Berger U, Bastl K. Pollen information consumption as an indicator of pollen allergy burden. Wien Klin Wochenschr. 2016;128(1–2):59–67.

    Article  PubMed  Google Scholar 

  23. Kmenta M, Bastl K, Jäger S, Berger U. Development of personal pollen information – the next generation of pollen information and a step forward for hay fever sufferers. Int J Biometeorol. 2014;58(8):1721–6.

    Article  PubMed  Google Scholar 

  24. Landesmeer SH, Hedriks EA, de Weger LA, Reiber JH, Stoel BC. Detection of pollen grains in multifocal optical microscopy images of air samples. Microsc Res Tech. 2009;72(6):424–30.

    Article  Google Scholar 

  25. Muradil M, Okamoto Y, Yonekura S, Chazono H, Hisamitsu M, Horiguchi S, Hanazawa T, Takahashi Y, Yokota K, Okumura S. Reevaluation of pollen quantification by an automatic pollen counter. Allergy Asthma Proc. 2010;31(5):422–7.

    Article  PubMed  Google Scholar 

  26. Oteros J, Hofmann F, Laven G, Röseler S, Wacher R, Buters JTM. Errors in the determining the flow rate of Hirst-type pollen traps. Session Workshop 6th European Symposium on Aerobiology of the European Aerobiology Society, Abstracts book. 2016, p 239.

    Google Scholar 

  27. Oteros J, Pusch G, Weichenmeier I, Heimann U, Möller R, Röseler S, Traidl-Hoffmann C, Schmidt-Weber C, Buters JTM. Automatic and online pollen monitoring. Int Arch Allergy Immunol. 2015;167(3):158–66, https://www.karger.com/Article/Pdf/436968.

    Article  PubMed  Google Scholar 

  28. Pawankar R, Holgate ST, Canonica GW, Lockey RF, Blaiss MS. WAO white book on allergy: update 2013. Milwaukee: World Allergy Organization (WAO); 2013, p 242.

    Google Scholar 

  29. Ranzato M, Taylor PE, House JM, Flagan RC, LeCun Y, Perona P. Automatic recognition of biological particles in microscopic images. Pattern Recognit Lett. 2007;28(1):31–9.

    Article  Google Scholar 

  30. Rantio-Lehtimäki A, Koivikko A, Kupia R, Mäkinen Y, Pohjola A. Significance of sampling height of airborne particles for aerobiological information. Allergy. 1991;46:68–76.

    Article  PubMed  Google Scholar 

  31. Ronneberger O, Schultz E, Burkhardt H. Automated pollen recognition using 3D volume images from fluorescence microscopy. Aerobiologia (Bologna). 2002;18:107–15.

    Article  Google Scholar 

  32. Scharring S, Schulzt E, Heimann U, Gehrig R, Defila C, Köhler B, Burkhardt H, Ronneberger O, Wang Q, Brandenburg A, Sulz G, v. Her M, Giel D, Fratz M, Koch W, Dunkhorst W, Lödding H, Müller W, Breitfuss G. Automatic pollen recognition – deevelopments and perspectives. Nachrichtenbl Dtsch Pflanzenschutzd. 2006;58(11):309–14.

    Google Scholar 

  33. Schmid-Grendelmeier P. Pollen allergy and immunotherapy. Ther Umsch. 2012;69:239–48.

    Article  CAS  PubMed  Google Scholar 

  34. Semprebon GM, Rivals F, Fahlke JM, Sanders WM, Lister AM, Göhlich UB. Dietary reconstruction of pygmy mammoths from Santa Rosa Island of California. Quat Int. 2016; doi:10.1016/j.quaint.2015.10.120.

    Google Scholar 

  35. Sofiev M, Siljamo P, Ranta H, Rantio-Lehtimäki A. Towards numerical forecasting of long-range air transport of birch pollen: theoretical considerations and a feasibility study. Int J Biometeorol. 2006;50:392–402.

    Article  CAS  PubMed  Google Scholar 

  36. Stillman EC, Flenley JR. The needs and prospects for automation in palynology. Quat Sci Rev. 1996;15:1–5.

    Article  Google Scholar 

  37. Vogel H, Pauling A, Vogel B. Numerical simulation of birch pollen dispersion with an operational weather forecast system. Int J Biometeorol. 2008;52(8):805–14.

Download references

Acknowledgements

We thank an anonymous reviewer for his/her careful review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharina Bastl.

Ethics declarations

Conflict of interest

K. Bastl, K.-C. Bergmann, M. Kmenta and U. Berger report to have taken part in the development of the app “Pollen” that is freely available and without advertisement and thus of no financial interest. M. Berger declares that he has no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bastl, K., Berger, M., Bergmann, KC. et al. The medical and scientific responsibility of pollen information services. Wien Klin Wochenschr 129, 70–74 (2017). https://doi.org/10.1007/s00508-016-1097-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00508-016-1097-3

Keywords

Navigation