Wiener klinische Wochenschrift

, Volume 128, Issue 11–12, pp 404–413 | Cite as

Emergence of multidrug-resistant Proteus mirabilis in a long-term care facility in Croatia

  • Branka BedenićEmail author
  • Nataša Firis
  • Vesna Elveđi-Gašparović
  • Marija Krilanović
  • Krešimir Matanović
  • Iva Štimac
  • Josefa Luxner
  • Jasmina Vraneš
  • Tomislav Meštrović
  • Gernot Zarfel
  • Andrea Grisold
original article



An increased frequency of Proteus mirabilis isolates resistant to expanded-spectrum cephalosporins was observed recently in a long-term care facility in Zagreb (Godan). The aim of this study was the molecular characterization of resistance mechanisms to new cephalosporins in P. mirabilis isolates from this nursing home.


Thirty-eight isolates collected from 2013–2015 showing reduced susceptibility to ceftazidime were investigated. Antibiotic susceptibilities were determined by broth microdilution method. Inhibitor-based tests were performed to detect extended-spectrum (ESBLs) and AmpC β-lactamases. AmpC β-lactamases were characterized by polymerase chain reaction (PCR) followed by sequencing of bla ampC genes. Quinolone resistance determinants (qnr genes) were characterized by PCR. Genotyping of the isolates was performed by repetitive element sequence (rep)-PCR and pulsed-field gel electrophoresis (PFGE).


Presence of an AmpC β-lactamase was confirmed in all isolates by combined-disk test with phenylboronic acid. All isolates were resistant to amoxicillin alone and combined with clavulanate, cefotaxime, ceftriaxone, cefoxitin, and ciprofloxacin; but susceptible to cefepime, imipenem, and meropenem. PCR followed by sequencing using primers targeting bla ampc genes revealed CMY-16 β-lactamase in all but one strain. Bla cmy-16 was carried by a non-conjugative plasmid which did not belong to any known plasmid-based replicon typing (PBRT) group. Rep-PCR identified one large clone consisting of 15 isolates, three pairs or related isolates, one triplet, and four singletons. PFGE confirmed the clonality of the isolates.


This is the first report of multidrug resistant P. mirabilis in a nursing home in Croatia. Cephalosporin resistance was due to plasmid-mediated AmpC β-lactamase CMY-16.


CMY-16 Proteus mirabilis AmpC β-lactamases Conjugative plasmid Clonal dissemination 


Compliance with ethical guidelines

Conflict of interest

B. Bedenić, N. Firis, V. Elveđi-Gašparović, M. Krilanović, K. Matanović, I. Štimac, J. Luxner, J. Vraneš, T. Meštrović, G. Zarfel and A. Grisold state that there are no conflicts of interest.

Ethical standards

This was in vitro study which did not involve human or animal subject and the permission from the Ethical Comittee was not necessary.


  1. 1.
    Grover CN, Sahni BAK, Bhattacharya CS. Therapeutic challenges of ESBLs and AmpC β-lactamase producers in a tertiary care center. Med J Armed Forces. 2013;69:4–10.CrossRefGoogle Scholar
  2. 2.
    Bush K. Is it important to identify extended-spectrum β-lactamase-producing isolates? Eur J Clin Microbiol Infect Dis. 1996;15:361–4.CrossRefPubMedGoogle Scholar
  3. 3.
    Phillipon A, Arlet G, Lagrange H. Origin and impact of plasmid-mediated extended-spectrum β-lactamases. Eur J Clin Microbiol Infect Dis. 1994;13(Suppl 1):17–29.CrossRefGoogle Scholar
  4. 4.
    Tan TJ, Yong NG, Koh TK, Hsu LY. Evaluation of screening methods to detect plasmid-mediated AmpC in Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis. Antimicrob Agents Chemother. 2009;53:146–9.CrossRefPubMedGoogle Scholar
  5. 5.
    Datta P, Gupta V, Arora S, Garg S, Chander J. Epidemiology of extended-spectrum β-lactamase, AmpC, and carbapenemase production in Proteus mirabilis. Jpn J Infect Dis. 2014;67:44–6.CrossRefPubMedGoogle Scholar
  6. 6.
    Pagani L, Migliavacca R, Pallechi L. Emerging extended-spectrum β-lactamases in Proteus mirablis. J Clin Microbiol. 2002;40:1549–52.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Sardelić S, Bedenić B, Šijak D, Colinon C, Kalenić S. Emergence of Proteus mirabilis isolates producing TEM-52 β-lactamase in Croatia. Chemotherapy. 2010;56:208–13.CrossRefPubMedGoogle Scholar
  8. 8.
    Tonkic M, Mohar B, Sisko-Kraljević K, Mesko-Meglic K, Goić-Barisić I, Novak A, Kovacić A, Punda-Polić V. High prevalence and molecular characterization of extended-spectrum β-lactamase-producing Proteus mirabilis isolates in southern Croatia. J Med Microbiol. 2010;59:1185–90.CrossRefPubMedGoogle Scholar
  9. 9.
    CLSI. Clinical and Laboratory Standards Institute Performance Standards for Antimicrobial Susceptibility Testing. 21st informational supplement. Wayne, PA: CLSI; 2011, pp. M100–21.Google Scholar
  10. 10.
    Jarlier V, Nicolas MH, Fournier G, Philippon A. Extended broad-spectrum β-lactamases conferring transferable resistance to newer β-lactam agents in Enterobacteriaceae: hospital prevalence and susceptibility patterns. Rev Infect Dis. 1998;10:867–78.CrossRefGoogle Scholar
  11. 11.
    Coudron PE. Inhibitor-based methods for detection of plasmid-mediated AmpC β-lactamases in Klebsiella spp., Escherichia coli and Proteus mirabilis. J Clin Microbiol. 2005;43:4163–7.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Elwell S, Falkow LP. The characterization of R plasmids and the detection of plasmid-specified genes. In: Lorian V, editor. Antibiotics in Laboratory Medicine, 2nd edn. Baltimore: Williams and Wilkins; 1986. pp. 683–721.Google Scholar
  13. 13.
    Nüesch-Inderbinen MT, Haechler H, Kayser FH. Detection of genes coding for extended-spectrum SHV β-lactamases in clinical isolates by a molecular genetic method, and comparison with the E test. Eur J Clin Microbiol Infect Dis. 1996;15:398–402.CrossRefPubMedGoogle Scholar
  14. 14.
    Arlet G, Brami D, Decre D, Flippo A, Gaillot O, Lagrange PH, Philippon A. Molecular characterization by PCR restriction fragment polymorphism of TEM β-lactamases. FEMS Microbiol Lett. 1995;134:203–8.PubMedGoogle Scholar
  15. 15.
    Woodford N, Ward ME, Kaufmann ME, Turton J, Fagan EJ, James D, Johnson AP, Pike R, Warner M, Cheasty T, Pearson A, Harry S, Leach JB, Loughrey A, Lowes JA, Warren RE, Livermore DM. Community and hospital spread of Escherichia coli producing CTX-M extended-spectrum β-lactamases in the UK. J Antimicrob Chemother. 2004;54:735–43.CrossRefPubMedGoogle Scholar
  16. 16.
    Pagani L, Mantengoli E, Migliavacca R, Nucleo E, Pollini S, Spalla M, Daturi R, Romero E, Rossolini GM. Multifocal detection of multidrug-resistant Pseudomonas aeruginosa producing PER-1 extended-spectrum β-lactamase in Northern Italy. J Clin microbiol. 2004;42:2523–9.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Perez-Perez FJ, Hanson ND. Detection of plasmid-mediated AmpC β-lactamase genes in clinical isolates by using multiplex PCR. J Clin Microbiol. 2002;40:2153–62.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Hanson ND, Moland ES, Hossain A, Neville SA, Gosbell IB, Unusual TKS. Salmonella enterica serotype typhimurium isolate producing CMY-7, SHV-9 and OXA-30 β-lactamases. J Antimicrob Chemother. 2002;49(6):1011–4.CrossRefPubMedGoogle Scholar
  19. 19.
    Saladin M, Cao VY, Lambert T. Diversity of CTX-M beta-lactamases and their promoter regions from Enterobacteriaceae isolated in three Parisian hospitals. FEMS Microbiol Lett. 2002;209:161–8.PubMedGoogle Scholar
  20. 20.
    Robischek A, Jacoby GA, Hooper DC. The worldwide emergence of plasmid-mediated quinolone resistance. Lancet Infect Dis. 2006;6:629–40.CrossRefGoogle Scholar
  21. 21.
    Carattoli A, Bertini L, Villa L, Falbo V, Hopkins KL, Threfall EJ. Identification of plasmids by PCR-based replicon typing. J Microbiol Methods. 2005;63:219.CrossRefPubMedGoogle Scholar
  22. 22.
    Overdevest S, Willemsen C, Elberts M, Verhulsts P, Rijnsburger J, Savelkoulnd A, Kluytmans JW. Evaluation of the DiversiLab Typing Method in a Multicenter Study. Assessing Horizontal Spread of Highly Resistant Gram-Negative Rods. J Clin Microbiol. 2011;49:3551–54.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Kaufman ME. Pulsed-Field Gel Electrophoresis. In: Woodford N, Johnsons A, editors. Molecular bacteriology. Protocols and clinical applications, 1st edn. New York: Humana Press Inc.; 1998. pp. 33–51.Google Scholar
  24. 24.
    Tenover F, Arbeit R, Goering RV, Mickelsen PA, Murray BE, Persing DH, Swaminthan B. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol. 1995;33:2233–9.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Black JA, Moland ES, Thomson KA. AmpC disk test for identification of plasmid-mediated-AmpC β-lactamases in Enterobacteriaceae lacking chromosomal AmpC β-lactamase. J Clin Microbiol. 2005;43:3110–3.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    D’Andrea MM, Literacka E, Zioga A, Giani T, Baraniak A, Fiett J, Sadowi E, Tassios T, Rossolini GM, Gniadkowski M, Miriagou V. Evolution and spread of multidrug-resistant Proteus mirabilis clone with chromosomal AmpC β-lactamase in Europe. Antimicrob Agents Chemother. 2011;55:2735–42.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Giakoupi P, Tambić-Andrašević A, Vourli S, Škrlin J, Šestan-Crnek S, Tzouvelekis LS, Vatoupoulos AC. Transferable DHA-1 cephalosporinase in Escherichia coli. Int J Antimicrob Agents. 2006;27:77–80.CrossRefGoogle Scholar
  28. 28.
    Rubić Ž, Soprek S, Jelić M, Radić M, Novak A, GoićBarišić I, Tonkić M, Tambić-Andrašević A. The first detection of plasmid-mediated AmpC β-lactamase in multidrug-resistant Proteus mirabilis isolates from University Hospital Split, Croatia 24th European congress of clinical Microbiology and Infectios Diseases, Barcelona, Spain. 2014.Google Scholar
  29. 29.
    Bedenić B, Matanović K, Mekić S, Varda-Brkić D, Šeol-Martinac B. Coproduction of CTX-M-15 and CMY-2 in animal Escherichia coli isolate from Croatia 24th European congress of clinical Microbiology and Infectios Diseases, Barcelona, Spain. 2014.Google Scholar
  30. 30.
    Zujić-Atalić V, Bedenić B, Kocsis E, Mazzariol A, Sardelić S, Barišić M, Plečko V, Bošnjak Z, Mijač M, Jajić I, Vranić-Ladavac M, Cornaglia G. Diversity of carbapenemases in clinical isolates of Enterobacteriaceae in Croatia-the results of the multicenter study. Clin Microbiol Infect. 2004;20:894–903.CrossRefGoogle Scholar
  31. 31.
    Literacka E, Empel J, Baraniak A, Sadowy E, Hryniewic W, Gniadkowski M. Four variants of the Citrobacter freundii AmpC type cephalosporinase including tow novel enzymes, CMY-14 and CMY-15 in a Proteus mirabilis clone widespread in Poland. Antimicrob Agents Chemother. 2004;48:4136–43.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Migliavacca R, Migliavacca A, Nucleo E, Ciaponi A, Spalla M, Luca C De, Pagani L. Molecular epidemiology of ESBL producing Proteus miraiblis isolates from a long-term care and rehabilitation facility in Italy. New Microbiol. 2007;30:362–366.PubMedGoogle Scholar
  33. 33.
    Tenover F, Emery SL, Spiegel CA. Identification of plasmid-mediated AmpC β-lactamases in Escherichia coli, Klebsiella spp and Proteus mirabilis can potentially improve reporting of cephalosporin susceptibility testing results. J Clin Microbiol. 2009;47:294–299.CrossRefPubMedGoogle Scholar
  34. 34.
    Luzzaro F. Spread of multidrug-resistant Proteus mirabilis isolates producing an AmpC-type β-lactamase:epidemiology and clinical management. Int J Antimicrob Agents. 2009;33:328–333.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Branka Bedenić
    • 1
    • 2
    Email author
  • Nataša Firis
    • 2
  • Vesna Elveđi-Gašparović
    • 3
  • Marija Krilanović
    • 4
  • Krešimir Matanović
    • 5
  • Iva Štimac
    • 5
  • Josefa Luxner
    • 6
  • Jasmina Vraneš
    • 7
  • Tomislav Meštrović
    • 8
  • Gernot Zarfel
    • 6
  • Andrea Grisold
    • 6
  1. 1.Department of Microbiology, School of MedicineUniversity of ZagrebZagrebCroatia
  2. 2.Clinical Department for Clinical and Molecular MicrobiologyClinical Hospital Centre ZagrebZagrebCroatia
  3. 3.Department for Gynecology and Obstetrics, School of MedicineUniversity of Zagreb, University Hospital Center ZagrebZagrebCroatia
  4. 4.Department for MicrobiologyPublic Health Institute of Dubrovnik-Neretva CountyDubrovnikCroatia
  5. 5.Department of Microbiology and Infectious Diseases with Clinic, Faculty of Veterinary MedicineUniversity of ZagrebZagrebCroatia
  6. 6.Institute for Hygiene, Microbiology and Environmental MedicineMedical University of GrazGrazAustria
  7. 7.Zagreb Institute of Public Health “Andrija Štampar”School of Medicine, University of ZagrebZagrebCroatia
  8. 8.Polyclinic “Dr Zora Profozić”ZagrebCroatia

Personalised recommendations