Skip to main content
Log in

Modern stem cell therapy: approach to disease

  • review article
  • Published:
Wiener klinische Wochenschrift Aims and scope Submit manuscript

Summary

Various types of stem cells exist, each with their own advantages and disadvantages. Considering the current available evidence, important preclinical and clinical studies regarding the therapeutic potential of stem cells, stem cell therapy might be the important strategy for tissue repair. The development of stem cell therapy for tissue repair has primarily relied on stem cells, especially mesenchymal stem cells. Multilineage differentiation into all of the described cells are considered as important candidates for a range of diseases like neurological diseases, cardiovascular diseases, gastrointestinal cancer and genetic defects, as well as for acute and chronic wounds healing and pharmaceutical treatment. We review the properties and multipotency of stem cells and their differentiation potential, once cultured under specific growth conditions, for use in cell-based therapies and functional tissue replacement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Neirinckx V, Coste C, Rogister B, Wislet-Gendebien S. Concise review: adult mesenchymal stem cells, adult neural crest stem cells, and therapy of neurological pathologies: a state of play. Stem Cells Transl Med. 2013;2(4):284–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pozzobon M, Piccoli M, De Coppi P. Stem cells from fetal membranes and amniotic fluid: markers for cell isolation and therapy. Cell Tissue Bank. 2014;15(2):199–211.

    CAS  PubMed  Google Scholar 

  3. Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145–7.

    Article  CAS  PubMed  Google Scholar 

  4. Hofstetter CP, Schwarz EJ, Hess D, et al. Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc Natl Acad Sci USA. 2002;99(4):2199–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Swanger SA, Neuhuber B, Himes BT, Bakshi A, Fischer I. Analysis of allogeneic and syngeneic bone marrow stromal cell graft survival in the spinal cord. Cell Transplant. 2005;14(10):775–86.

    Article  PubMed  Google Scholar 

  6. Ritfeld GJ, Roos RA, Oudega M. Stem cells for central nervous system repair and rehabilitation. PM R. 2011;3(6 Suppl 1):S117–22.

    Article  PubMed  Google Scholar 

  7. Kim EY, Lee KB, Kim MK. The potential of mesenchymal stem cells derived from amniotic membrane and amniotic fluid for neuronal regenerative therapy. BMB Rep. 2014;47(3):135–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lerou PH, Daley GQ. Therapeutic potential of embryonic stem cells. Blood Rev. 2005;19(6):321–31.

    Article  PubMed  Google Scholar 

  9. Shufaro Y, Reubinoff BE. Therapeutic applications of embryonic stem cells. Best Pract Res Clin Obstet Gynaecol. 2004;18(6):909–27.

    Article  PubMed  Google Scholar 

  10. Martinez-Montiel Mdel P, Gomez-Gomez GJ, Flores AI. Therapy with stem cells in inflammatory bowel disease. World J Gastroenterol. 2014;20(5):1211–27.

    Article  PubMed  Google Scholar 

  11. Srivastava AK, Bulte JW. Seeing stem cells at work in vivo. Stem Cell Rev. 2014;10(1):127–44.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Fox IJ, Daley GQ, Goldman SA, et al. Stem cell therapy. Use of differentiated pluripotent stem cells as replacement therapy for treating disease. Science. 2014;345(6199):1247391.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292(5819):154–6.

    Article  CAS  PubMed  Google Scholar 

  14. Rossant J. Stem cells from the mammalian blastocyst. Stem Cells. 2001;19(6):477–82.

    Article  CAS  PubMed  Google Scholar 

  15. Stojkovic M, Lako M, Strachan T, Murdoch A. Derivation, growth and applications of human embryonic stem cells. Reproduction. 2004;128(3):259–67.

    Article  CAS  PubMed  Google Scholar 

  16. Smith AG. Embryo-derived stem cells: of mice and men. Annu Rev Cell Dev Biol. 2001;17:435–62.

    Article  CAS  PubMed  Google Scholar 

  17. Reubinoff BE, Pera MF, Fong CY, Trounson A, Bongso A. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol. 2000;18(4):399–404.

    Article  CAS  PubMed  Google Scholar 

  18. Wang Y, Qian DJ, Zhong WY, et al. TGF-beta1 induces the formation of vascular-like structures in embryoid bodies derived from human embryonic stem cells. Exp Ther Med. 2014;8(1):52–8.

    PubMed  PubMed Central  Google Scholar 

  19. Zhang L, Xu Q. Stem/progenitor cells in vascular regeneration. Arterioscler Thromb Vasc Biol. 2014;34(6):1114–9.

    Article  PubMed  Google Scholar 

  20. Sharma A, Wu JC, Wu SM. Induced pluripotent stem cell-derived cardiomyocytes for cardiovascular disease modeling and drug screening. Stem Cell Res Ther. 2013;4(6):150.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gerecht-Nir S, Itskovitz-Eldor J. The promise of human embryonic stem cells. Best Pract Res Clin Obstet Gynaecol. 2004;18(6):843–52.

    Article  PubMed  Google Scholar 

  22. Kim WS, Park BS, Sung JH, et al. Wound healing effect of adipose-derived stem cells: a critical role of secretory factors on human dermal fibroblasts. J Dermatol Sci. 2007;48(1):15–24.

    Article  CAS  PubMed  Google Scholar 

  23. Dai Y, Li J, Li J, et al. Skin epithelial cells in mice from umbilical cord blood mesenchymal stem cells. Burns. 2007;33(4):418–28.

    Article  PubMed  Google Scholar 

  24. Perng CK, Ku HH, Chiou SH, et al. Evaluation of wound healing effect on skin-defect nude mice by using human dermis-derived mesenchymal stem cells. Transplant Proc. 2006;38(9):3086–7.

    Article  CAS  PubMed  Google Scholar 

  25. Shih DT, Lee DC, Chen SC, et al. Isolation and characterization of neurogenic mesenchymal stem cells in human scalp tissue. Stem Cells. 2005;23(7):1012–20.

    Article  CAS  PubMed  Google Scholar 

  26. Jones EA, Kinsey SE, English A, et al. Isolation and characterization of bone marrow multipotential mesenchymal progenitor cells. Arthritis Rheum. 2002;46(12):3349–60.

    Article  PubMed  Google Scholar 

  27. Toda A, Okabe M, Yoshida T, Nikaido T. The potential of amniotic membrane/amnion-derived cells for regeneration of various tissues. J Pharmacol Sci. 2007;105(3):215–28.

    Article  CAS  PubMed  Google Scholar 

  28. Barzilay R, Kan I, Ben-Zur T, et al. Induction of human mesenchymal stem cells into dopamine-producing cells with different differentiation protocols. Stem Cells Dev. 2008;17(3):547–54.

    Article  CAS  PubMed  Google Scholar 

  29. Carraro G, Perin L, Sedrakyan S, et al. Human amniotic fluid stem cells can integrate and differentiate into epithelial lung lineages. Stem Cells. 2008;26(11):2902–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Petsche Connell J, Camci-Unal G, Khademhosseini A, Jacot JG. Amniotic fluid-derived stem cells for cardiovascular tissue engineering applications. Tissue Eng Part B Rev. 2013;19(4):368–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sun NZ, Ji HS. In vitro differentiation of human placenta-derived adherent cells into insulin-producing cells. J Int Med Res. 2009;37(2):400–6.

    Article  CAS  PubMed  Google Scholar 

  32. Moussavou G, Kwak DH, Lim MU, et al. Role of gangliosides in the differentiation of human mesenchymal-derived stem cells into osteoblasts and neuronal cells. BMB Rep. 2013;46(11):527–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu S, Qu Y, Stewart TJ, et al. Embryonic stem cells differentiate into oligodendrocytes and myelinate in culture and after spinal cord transplantation. Proc Natl Acad Sci USA. 2000;97(11):6126–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ivanova NB, Dimos JT, Schaniel C, et al. A stem cell molecular signature. Science. 2002;298(5593):601–4.

    Article  CAS  PubMed  Google Scholar 

  35. Ramalho-Santos M, Yoon S, Matsuzaki Y, Mulligan RC, Melton DA. “Stemness”: transcriptional profiling of embryonic and adult stem cells. Science. 2002;298(5593):597–600.

    Article  CAS  PubMed  Google Scholar 

  36. Pluchino S, Zanotti L, Deleidi M, Martino G. Neural stem cells and their use as therapeutic tool in neurological disorders. Brain Res Brain Res Rev. 2005;48(2):211–9.

    Article  CAS  PubMed  Google Scholar 

  37. Hess DC, Borlongan CV. Stem cells and neurological diseases. Cell Prolif. 2008;41(Suppl 1):94–114.

    PubMed  Google Scholar 

  38. Khalil MA, Hrabeta J, Cipro S, et al. Neuroblastoma stem cells—mechanisms of chemoresistance and histone deacetylase inhibitors. Neoplasma. 2012;59(6):737–46.

    Article  CAS  PubMed  Google Scholar 

  39. Ciurea ME, Georgescu AM, Purcaru SO, et al. Cancer stem cells: biological functions and therapeutically targeting. Int J Mol Sci. 2014;15(5):8169–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yu Z, Pestell TG, Lisanti MP, Pestell RG. Cancer stem cells. Int J Biochem Cell Biol. 2012;44(12):2144–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen S, Huang EH. The colon cancer stem cell microenvironment holds keys to future cancer therapy. J Gastrointest Surg. 2014;18(5):1040–8.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ning X, Shu J, Du Y, Ben Q, Li Z. Therapeutic strategies targeting cancer stem cells. Cancer Biol Ther. 2013;14(4):295–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Swiderska M, Choromanska B, Dabrowska E, et al. The diagnostics of colorectal cancer. Contemp Oncol (Pozn). 2014;18(1):1–6.

    CAS  Google Scholar 

  44. Laurent LC, Ulitsky I, Slavin I, et al. Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell. 2011;8(1):106–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sadan O, Shemesh N, Cohen Y, Melamed E, Offen D. Adult neurotrophic factor-secreting stem cells: a potential novel therapy for neurodegenerative diseases. Isr Med Assoc J. 2009;11(4):201–4.

    PubMed  Google Scholar 

  46. Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J Cell Biochem. 2006;98(5):1076–84.

    Article  CAS  PubMed  Google Scholar 

  47. Crigler L, Robey RC, Asawachaicharn A, Gaupp D, Phinney DG. Human mesenchymal stem cell subpopulations express a variety of neuro-regulatory molecules and promote neuronal cell survival and neuritogenesis. Exp Neurol. 2006;198(1):54–64.

    Article  CAS  PubMed  Google Scholar 

  48. Uccelli A, Benvenuto F, Laroni A, Giunti D. Neuroprotective features of mesenchymal stem cells. Best Pract Res Clin Haematol. 2011;24(1):59–64.

    Article  CAS  PubMed  Google Scholar 

  49. Guilak F, Estes BT, Diekman BO, Moutos FT, Gimble JM. 2010 Nicolas Andry Award: multipotent adult stem cells from adipose tissue for musculoskeletal tissue engineering. Clin Orthop Relat Res. 2010;468(9):2530–40.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Yamakawa H, Ieda M. Strategies for heart regeneration: approaches ranging from induced pluripotent stem cells to direct cardiac reprogramming. Int Heart J. 2015;56(1):1–5.

    Article  PubMed  Google Scholar 

  51. Edlinger C, Schreiber C, Wernly B, et al. Stem cell therapy for myocardial infarction 2001–2013 revisited. Stem Cell Rev. 2015;11(5):743–51.

    Article  CAS  PubMed  Google Scholar 

  52. Matsa E, Burridge PW, Wu JC. Human stem cells for modeling heart disease and for drug discovery. Sci Transl Med. 2014;6(239):239ps6.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Batista CE, Mariano ED, Marie SK, et al. Stem cells in neurology—current perspectives. Arq Neuropsiquiatr. 2014;72(6):457–65.

    Article  PubMed  Google Scholar 

  54. Dhamodaran K, Subramani M, Ponnalagu M, Shetty R, Das D. Ocular stem cells: a status update! Stem Cell Res Ther. 2014;5(2):56.

    Article  PubMed  PubMed Central  Google Scholar 

  55. El-Habashy SE, Nazief AM, Adkins CE, et al. Novel treatment strategies for brain tumors and metastases. Pharm Pat Anal. 2014;3(3):279–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Angelopoulou MK, Tsirkinidis P, Boutsikas G, Vassilakopoulos TP, Tsirigotis P. New insights in the mobilization of hematopoietic stem cells in lymphoma and multiple myeloma patients. Biomed Res Int. 2014;2014:835138.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Romano M, De Francesco F, Pirozzi G, et al. Expression of cancer stem cell biomarkers as a tool for a correct therapeutic approach to hepatocellular carcinoma. Oncoscience. 2015;2(5):443–56.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Chauveau S, Brink PR, Cohen IS. Stem cell-based biological pacemakers from proof of principle to therapy: a review. Cytotherapy. 2014;16(7):873–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ratajczak MZ. A novel view of the adult bone marrow stem cell hierarchy and stem cell trafficking. Leukemia. 2015;29(4):776–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Flores AI, Gomez-Gomez GJ, Masedo-Gonzalez A, Martinez-Montiel MP. Stem cell therapy in inflammatory bowel disease: a promising therapeutic strategy? World J Stem Cells. 2015;7(2):343–51.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Kozlik M, Wojcicki P. The use of stem cells in plastic and reconstructive surgery. Adv Clin Exp Med. 2014;23(6):1011–7.

    Article  PubMed  Google Scholar 

  62. Quan Y, Wang D. Clinical potentials of human pluripotent stem cells in lung diseases. Clin Transl Med. 2014;3:15.

    Article  PubMed  PubMed Central  Google Scholar 

  63. de Lazaro I, Yilmazer A, Kostarelos K. Induced pluripotent stem (iPS) cells: a new source for cell-based therapeutics? J Control Release. 2014;185C:37–44.

    Article  Google Scholar 

  64. Gieseck RL III, Colquhoun J, Hannan NR. Disease modeling using human induced pluripotent stem cells: lessons from the liver. Biochim Biophys Acta. 2015;1851(1):76–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Teng M, Huang Y, Zhang H. Application of stems cells in wound healing—an update. Wound Repair Regen. 2014;22(2):151–60.

    Article  PubMed  Google Scholar 

  66. Kalladka D, Muir KW. Brain repair: cell therapy in stroke. Stem Cells Cloning. 2014;7:31–44.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mateja Zemljic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zemljic, M., Pejkovic, B., Krajnc, I. et al. Modern stem cell therapy: approach to disease. Wien Klin Wochenschr 127 (Suppl 5), 199–203 (2015). https://doi.org/10.1007/s00508-015-0903-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00508-015-0903-7

Keywords

Navigation