Skip to main content
Log in

Pollen information consumption as an indicator of pollen allergy burden

  • original article
  • Published:
Wiener klinische Wochenschrift Aims and scope Submit manuscript

Summary

Background

The Austrian pollen information service distributes pollen forecasts and offers various options (webpages, a mobile “Pollen” app, interviews for newspapers, radio, TV and information for the press agency) to support and inform pollen allergy sufferers in Austria in the best way to help to avoid their allergen. These services are well received and user numbers have increased, especially in recent years.

Methods

Herein, we unravel for the first time the user pattern over time on a monthly basis and compare it to the major pollen seasons in Austria as well as to the allergic burden.

Results

The symptom load conforms to the web page user numbers and shows the same peaks from the study period of 2012 until 2014. The highest impact in user numbers and allergy burden occurred during the birch pollen season, although similar values were approached during the grass pollen season in 2014. Pollen loads during the respective pollen seasons of birch, grasses and herbs (mugwort and ragweed) mirrored the pattern as well, although to a minor extent, because different plant taxa have a different distribution within Austria and produce different amounts of pollen.

Conclusion

This study provides evidence that pollen information consumption can be seen as an indicator of the burden of pollen allergy sufferers as well as an indicator of the main flowering periods of the main plants inducing pollen allergies in Austria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bousquet J, Anto J, Auffray C, et al. MeDALL (Mechanisms of the Development of ALLergy): an integrated approach from phenotypes to systems medicine. Allergy. 2011;66:596–604.

    Article  CAS  PubMed  Google Scholar 

  2. Asher MI, Montefort S, Bjorksten B, et al. Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC phases one and three repeat multicountry cross-sectional surveys. Lancet. 2006;368:733–43.

    Article  PubMed  Google Scholar 

  3. D’Amato G, Cecchi L, Bonini S, et al. Allergenic pollen and pollen allergy in Europe. Allergy. 2007;62:976–90.

    Article  PubMed  Google Scholar 

  4. Dorner T, Rieder A, Lawrence K, Kunze M. Österreichischer Allergiebericht. Verein Altern mit Zukunft, editor 2006, Wien:. 135 pp.

  5. Schmid-Grendelmeier P. Pollen allergy and immunotherapy. Ther Umsch. 2012;69:239–48.

    Article  CAS  PubMed  Google Scholar 

  6. Kiotseridis H, Cilio CM, Bjermer L, Tunsäter A, Jacobsson H, Dahl A. Grass pollen allergy in children and adolescents-symptoms, health related quality of life and the value of pollen prognosis. Clinical and Translational. Allergy. 2013;3:19.

    Google Scholar 

  7. Jäger S. Von Pollen zur Pollenwarnung—Regional, Österreich, Europa. Pollen, Mensch & Stadt Symposium. 2011. Abstract book 2011;29–32.

  8. Buters JTM, Thibaudon M, Smith M, et al. Release of Bet v 1 from birch pollen from 5 European countries. Results from the HIALINE study. Atmos Environ. 2012;55:496–505.

    Article  CAS  Google Scholar 

  9. COST action, ES0603 (n.d.) EUPOL: Assessment of production, release, distribution and health impact of allergenic pollen in Europe. 2007; http://www.costeupol.unifi.it/index.html.

  10. Galán C, Antunes C, Brandao R, et al. Airborne olive pollen counts are not representative of exposure to the major olive allergen Ole e 1. Allergy. 2013;68:809–12.

    Article  PubMed  Google Scholar 

  11. Prank M, Chapman DS, Bullock JM, et al. An operational model for forecasting ragweed pollen release and dispersion in Europe. Agric For Meteorol. 2013;182–183:43–53.

    Article  Google Scholar 

  12. Siljamo P, Sofiev M, Filatova E, et al. A numerical model of birch pollen emission and dispersion in the atmosphere. Model evaluation and sensitivity analysis. Int J Biometeorol. 2013;57(1):125–36. doi:10.1007/s00484-012-0539-5.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Sofiev M, Siljamo P, Ranta H, et al. A numerical model of birch pollen emission and dispersion in the atmosphere. Description of the emission module. Int J Biometeorol. 2013;57(1):45–58. doi:10.1007/s00484-012-0532-z.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Berger U Wie lassen sich die Akzeptanz und Zugriffszahlen der Besucher des Services www.pollenwarndienst.at durch Veränderung des Informationsangebotes nachhaltig steigern? Master thesis, Vienna University of Economics and Business; 2007.

  15. Berger U, Karatzas K, Jaeger S, et al. Personalized pollen-related symptom-forecast information services for allergic rhinitis patients in Europe. Allergy. 2013b;68:963–5. doi:10.1111/all.12181.

    Article  CAS  PubMed  Google Scholar 

  16. Kmenta M, Bastl K, Jäger S, Berger U. Development of personal pollen information—the next generation of pollen information and a step forward for hay fever sufferers. Int J Biometeorol. 2014;58(8):1721–6. doi:10.1007/s00484-013-0776-2.

    Article  PubMed  Google Scholar 

  17. Bastl K, Kmenta M, Jäger S, Bergmann KC EAN, Berger U. Development of a symptom load index: enabling temporal and regional pollen season comparisons and pointing out the need for personalized pollen information. Aerobiologia. 2014;30:269–80.

    Article  Google Scholar 

  18. Karatzas K, Voukantsis D, Jäger S, et al. The patient’s hay-fever diary: three years of results from Germany. Aerobiologia. 2013;30:1–11.

    Article  Google Scholar 

  19. Voukantsis D, Karatzas K, Jaeger S, Berger U, Smith M. Analysis and forecasting of airborne pollen– induced symptoms with the aid of computational intelligence methods. Aerobiologia. 2013;29:175–85.

    Article  Google Scholar 

  20. Jäger S, Mandroli P, Spieksma F, et al. News. Aerobiologia. 1995;11:69–70.

    Article  Google Scholar 

  21. Galán C, Smith M, Thibaudon M, et al. Pollen monitoring: minimum requirements and reproducibility of analysis. Aerobiologia. 2014;30:385–95. doi:10.1007/s10453-014-9335-5.

    Article  Google Scholar 

  22. Hemmer W, Schauer U, Trinca AM, Neumann C. Endbericht 2009 zur Studie: Prävalenz der Ragweedpollen-Allergie in Ostösterreich. St. Pölten: Amt der Niederösterreichischen Landesregierung, Landesamtsdirektion, Abteilung Gebäudeverwaltung, Amtsdruckerei; 2010.

  23. Caillaud DM, Martin S, Segala C, et al. Nonlinear short-term effects of airborne Poaceae levels on hay fever symptoms. J Allergy Clin Immunol. 2012;130:812–4.

    Article  PubMed  Google Scholar 

  24. Caillaud DM, Martin S, Segala C, et al. Effects of airborne birch pollen levels on clinical symptoms of seasonal allergic rhinoconjunctivitis. Int Arch Allergy Immunol. 2014;163:43–50. doi:10.1159/000355630.

    Article  CAS  PubMed  Google Scholar 

  25. Matricardi PM, Bockelbrink A, Keil T, et al. Dynamic evolution of serum immunoglobulin E to airborne allergens throughout childhood: results from the Multi-Centre Allergy Study birth cohort. Clin Exp Allergy. 2009;39:1551–7.

    Article  CAS  PubMed  Google Scholar 

  26. Pfaar O, Biedermann T, Klimek L, Sager A, Robinson DS. Depigmented–polymerized mixed grass/birch pollen extract immunotherapy is effective in polysensitized patients. Allergy. 2013;68:1306–13.

    Article  CAS  PubMed  Google Scholar 

  27. Frenguelli G, Passalacqua G, Bonini S, et al. Bridging allergologic and botanical knowledge in seasonal allergy: a role for phenology. Annals of Allergy Asthma Immunology. 2010;105:223–7.

    Article  Google Scholar 

  28. León-Ruiz E, Alcázar P, Domínguez-Vilches E, Galán C. Study of Poaceae phenology in a Mediterranean climate. Which species contribute most to airborne pollen counts? Aerobiologia. 2011;27:37–50.

    Article  Google Scholar 

  29. Bullimore AD, Batten TN, Hewings SJ, Skinner MA. Heterogeneity of biological profile of grasses within the Pooideae family; Benefits of grass mixes. 31st Congress of The European Academy of Allergy and Clinical Immunology 2012; Poster Presentation, Poster 567, Geneva, Switzerland. 2012.

  30. Kleine-Tebbe J. One grass or many? Does allergy distinguish among species? Drugs of Today. 2008;44(Suppl. B):65–7.

    PubMed  Google Scholar 

  31. Moingeon P, Hrabina M, Bergmann KC, et al. Specific immunotherapy for common grass pollen allergies: pertinence of a five grass pollen vaccine. Int Arch Allergy Immunol. 2008;146(4):338–42. doi:10.1159/000121468.

    Article  CAS  PubMed  Google Scholar 

  32. Jäger S. Allergenic pollen and pollinosis in Europe. D’Amato, Spieksma and Bonini eds. Oxford: Blackwell Scientific Publications; 1991. pp. 125–7. Chapter 17, Allergenic significance of Ambrosia (ragweed).

  33. Hirschwehr R, Heppner C, Spitzauer S, et al. Identification of common allergenic structures in mugwort and ragweed pollen. J Allergy Clin Immunol. 1998;101:196–206.

    Article  CAS  PubMed  Google Scholar 

  34. Asero R, Wopfner N, Gruber P, Gadermaier G, Ferreira F. Artemisia and Ambrosia hypersensitivity: co-sensitization or co-recognition? Clin Exp Allergy. 2006;36:658–65.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Christoph Jäger for supporting the team with the SLI calculations and taking care of the technical background of the databases used (Patient’s Hayfever Diary and the European Aeroallergen Network). Furthermore, we want to thank all Austrian contributors of the European Aeroallergen Network for providing the authors with pollen data: Sabine Kottik (Lower Austria and Vorarlberg); Helmut Zwander (Carinthia); Notburga Oeggl-Wahlmüller (Tyrol); Hanna Schantl (Salzburg); Ursula Brosch and Pramodchandra Harvey (Styria) and Roland and Jutta Schmidt (Upper Austria). Furthermore, we thank two anonymous reviewers who contributed with their careful reviews to the improvement of this publication. Foremost, we want to thank Prof. Siegfried Jäger who sadly passed away in September 2014 for his dedication to build up the Austrian pollen information service and who, therefore, made this study possible.

Conflict of interest

Maximilian Kmenta declares that he has no conflict of interest. Reinhard Zetter declares that he has no conflict of interest. Uwe Berger declares that he has no conflict of interest. Katharina Bastl declares that she has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximilian Kmenta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kmenta, M., Zetter, R., Berger, U. et al. Pollen information consumption as an indicator of pollen allergy burden. Wien Klin Wochenschr 128, 59–67 (2016). https://doi.org/10.1007/s00508-015-0855-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00508-015-0855-y

Keywords

Navigation