Skip to main content
Log in

Gender, metabolic control and carotid intima-media-thickness in children and adolescents with type 1 diabetes mellitus

Geschlecht, metabolische Kontrolle und Carotis Intima-Media-Dicke bei Kindern und Jugendlichen mit Type 1 Diabetes mellitus

  • original article
  • Published:
Wiener klinische Wochenschrift Aims and scope Submit manuscript

Summary

Background

Despite a marked improvement in the overall prognosis of patients with type 1 diabetes mellitus (T1DM), cardiovascular morbidity/mortality is still increased. Since cellular and microvascular aberrations have been demonstrated already in children with T1DM, albeit a good glycemic control (CO), we hypothesized that early macrovascular changes can be detected by common carotid artery intima-media thickness (CCA-IMT).

Methods

We included 73 children/adolescents with T1DM (34 boys, 39 girls; mean age, 14.8 ± 2 years) and 243 sex- and age-matched healthy CO. In T1DM mean HbA1c was 7.9 ± 1.1 rel.%, and duration of disease 7.5 ± 3.1 years. High-resolution ultrasonography was used to assess CCA-IMT, defined as the mean of 24 measurements of the near and far wall on both right and left CCA.

Results

CCA-IMT was not different in the total of children and adolescents with T1DM compared with CO (0.302 ± 0.057 vs. 0.301 ± 0.054 mm; p = 0.88). Analysis according to gender, however, revealed higher CCA-IMT values in girls than in boys in the diabetic cohort (0.315 ± 0.055 vs. 0.288 ± 0.058 mm; p = 0.047), whereas CCA-IMT was higher in boys than in girls in the CO group (0.321 ± 0.057 vs. 0.284 ± 0.045 mm; p < 0.001). Multiple stepwise backward regression showed that in the T1DM group only HbA1c remained significantly associated with CCA-IMT (Beta = − 0.307, p = 0.008). In CO, gender (Beta = − 0.302, p < 0.001), body mass index (Beta = 0.226, p < 0.001) and systolic blood pressure (Beta = 0.213, p < 0.001) were predictive of CCA-IMT.

Conclusion

Our data suggest that in children/adolescents with T1DM the quality of metabolic CO (HbA1c) is the most important predictor of CCA-IMT and outweighs the effect of gender.

Zusammenfassung

Hintergrund

Trotz der besseren Allgemeinprognose von Patienten mit Diabetes Mellitus Typ 1 (T1DM) ist die kardiovaskuläre Morbidität/Mortalität noch hoch. Da bereits über zelluläre und mikrovaskuläre Veränderungen bei Kindern und Jugendlichen mit T1DM auch im Fall einer guten glykämischen Kontrolle berichtet wurde, haben wir angenommen, dass sehr frühe makrovaskuläre Veränderungen durch die Messung der Intima-Media-Dicke im Bereich der Arteria carotis communis (CCA-IMT) detektiert werden könnten.

Methoden

Eingeschlossen wurden 73 Kinder und Jugendliche mit T1DM (34 männlich, 39 weiblich; Durchschnittsalter 14,8 ± 2 Jahre) und 243 geschlechts- und altersgematchte gesunde Kontrollen (CO). Bei T1DM betrug der HbA1c-Mittelwert 7,9 ± 1,1 rel. % und die Krankheitsdauer 7,5 ± 3,1 Jahre. Die CCA-IMT wurde mittels Duplexsonographie ermittelt und als Mittelwert aus 24 Messungen im Bereich der anterioren und posterioren Wand der rechten und linken ACC definiert.

Ergebnisse

Wir fanden keinen signifikanten Unterschied in der CCA-IMT zwischen T1DM und CO Gruppe (0,302 ± 0,057 vs. 0,301 ± 0,054 mm; p = 0,88). In der geschlechtsbezogenen Subgruppenanalyse zeigte sich jedoch ein statistisch signifikanter Unterschied zwischen weiblichem und männlichem Kollektiv mit höheren IMT-Werten für Mädchen (0,315 ± 0,055 vs. 0,288 ± 0,058 mm; p = 0,047) in der T1DM Gruppe und höheren Werten für Jungen in der CO-Gruppe (0,321 ± 0,057 vs. 0,284 ± 0,045 mm; p < 0,001).

Nach multiplen rückwärts Regressionsanalysen zeigte in der T1DM Gruppe nur noch der HbA1c-Wert eine signifikante Assoziierung mit CCA-IMT (Beta = − 0,307, p = 0,008). In der CO Gruppe waren Geschlecht (Beta = − 0,302, p < 0,001), BMI (Beta = 0,226, p < 0,001) und systolischer Blutdruck (Beta = 0,213, p < 0,001) prädiktiv für CCA-IMT.

Schlussfolgerung

Unsere Ergebnisse suggerieren, dass in Kindern/Jugendlichen mit T1DM die Qualität der metabolischen Kontrolle (HbA1c) der wichtigste Prädiktor für CCA-IMT ist und auch die geschlechtsbezogenen Unterschiede aufheben kann.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Nathan DM, Cleary PA, Backlund JY, et al. Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Study Research Group Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med. 2005;353:2643–53.

    Article  PubMed  Google Scholar 

  2. Pambianco G, Costacou T, Ellis D, et al. The 30-year natural history of type 1 diabetes complications: the Pittsburgh Epidemiology of Diabetes Complications Study experience. Diabetes. 2006;55:1463–9.

    Article  CAS  PubMed  Google Scholar 

  3. Soedamah-Muthu SS, Fuller JH, Mulnier HE, et al. All-cause mortality rates in patients with type 1 diabetes mellitus compared with a non-diabetic population from the UK general practice research database, 1992–1999. Diabetologia. 2006;49:660–6.

    Article  CAS  PubMed  Google Scholar 

  4. Waernbaum I, Blohmé G, Ostman J, et al. Excess mortality in incident cases of diabetes mellitus aged 15–34 years at diagnosis: a population-based study (DISS) in Sweden. Diabetologia. 2006;49:653–9.

    Article  CAS  PubMed  Google Scholar 

  5. Secrest AM, Becker DJ, Kelsey SF, et al. All-cause mortality trends in a large population-based cohort with long-standing childhood-onset type 1 diabetes: the Allegheny County type 1 diabetes registry. Diabetes Care. 2010;33:2573–9.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Groop PH, Thomas MC, Moran JL, et al. FinnDiane Study Group. The presence and severity of chronic kidney disease predicts all-cause mortality in type 1 diabetes. Diabetes. 2009;58:1651–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Dogra G, Rich L, Stanton K, Watts GF. Endothelium-dependent and independent vasodilation studies at normoglycaemia in type I diabetes mellitus with and without microalbuminuria. Diabetologia. 2001;44:593–01.

    Article  CAS  PubMed  Google Scholar 

  8. Devaraj S, Cheung AT, Jialal I, et al. Evidence of increased inflammation and microcirculatory abnormalities in patients with type 1 diabetes and their role in microvascular complications. Diabetes. 2007;56:2790–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Lopes-Virella MF, Carter RE, Gilbert GE, et al. Diabetes Control and Complications Trial/Epidemiology of Diabetes Intervention and Complications Cohort Study Group. Risk factors related to inflammation and endothelial dysfunction in the DCCT/EDIC cohort and their relationship with nephropathy and macrovascular complications. Diabetes Care. 2008;31:2006–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Lin J, Glynn RJ, Rifai N, et al. Inflammation and progressive nephropathy in type 1 diabetes in the diabetes control and complications trial. Diabetes Care. 2008;31:2338–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Hörtenhuber T, Rami-Mehar B, Satler M, et al. Endothelial progenitor cells are related to glycemic control in children with type 1 diabetes mellitus over time. Diabetes Care. 2013;36:1647–53.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Schlager O, Hammer A, Willfort-Ehringer A, et al. Microvascular autoregulation in children and adolescents with type 1 diabetes mellitus. Diabetologia. 2012;55:1633–40.

    Article  CAS  PubMed  Google Scholar 

  13. Berger E, Sochett EB, Peirone A, et al. Cardiac and vascular function in adolescents and young adults with type 1 diabetes. Diabetes Technol Ther. 2004;6:129–35.

    Article  PubMed  Google Scholar 

  14. Lande MB, Carson NL, Roy J, et al. Effects of childhood primary hypertension on carotid intima media thickness: a matched controlled study. Hypertension. 2006;48:40–4.

    Article  CAS  PubMed  Google Scholar 

  15. Pauciullo P, Iannuzzi A, Sartorio R, et al. Increased intima-media thickness of the common carotid artery in hypercholesterolemic children. Arterioscler Thromb. 1994;14:1075–9.

    Article  CAS  PubMed  Google Scholar 

  16. Reinher T, Kiess W, de Sousa G, et al. Intima media thickness in childhood obesity: relations to inflammatory marker, glucose metabolism, and blood pressure. Metabolism. 2006;55:113–8.

    Article  Google Scholar 

  17. Bonora E, Tessari R, Micciolo R, et al. Intimal-medial thickness of the carotid artery in nondiabetic and NIDDM patients. Relationship with insulin resistance. Diabetes Care. 1997;20:627–31.

    Article  CAS  PubMed  Google Scholar 

  18. Gunczler P, Lanes R, Lopez E, et al. Cardiac mass and function, carotid artery intima-media thickness and lipoprotein (a) levels in children and adolescents with type 1 diabetes mellitus of short duration. J Pediatr Endocrinol Metab. 2002;15:181–6.

    CAS  PubMed  Google Scholar 

  19. Parikh A, Sochett EB, McCrindle BW, et al. Carotid artery distensibility and cardiac function in adolescents with type 1 diabetes. J Pediatr. 2000;137:465–9.

    Article  CAS  PubMed  Google Scholar 

  20. Järvisalo MJ, Putto-Laurila A, Jartti L, et al. Carotid artery intima-media thickness in children with type 1 diabetes. Diabetes. 2002;51:493–8.

    Article  PubMed  Google Scholar 

  21. World Medical Association Declaration of Helsinki. Recommendations guiding physicians in biomedical research involving human subjects. Helsinki, Finland, 1964; amended in Tokyo, Japan, 1975; Venice, Italy, 1983; Hong Kong 1989; Somerset West, South Africa, 1996; Edinburgh, Scotland, 2000; Washington, USA, 2002; Tokyo, Japan 2004; Seoul, Korea, 2008. http://www.wma.net/en/30publications/10policies/b3/ . http://ethikkommission.meduniwien.ac.at/fileadmin/ethik/media/dokumente/rechtsgrundlagen/Declaration_of_Helsinki_October_2008.pdf

  22. American Academy of Pediatrics. American Academy of Pediatrics. Committee on Nutrition. Cholesterol in childhood. Pediatrics. 1998;101:141–7.

  23. Neuhauser HK, Thamm M, Ellert U, et al. Blood pressure percentiles by age and height from nonoverweight children and adolescents in Germany. Pediatrics. 2011;127:978–88.

    Article  Google Scholar 

  24. Kromeyer-Hauschild K, Wabitsch M, Kunze D, et al. Perzentile für den Body-mass-Index für das Kindes- und Jugendalter unter Heranziehung verschiedener deutscher Stichproben. Monatsschr Kinderheilkd. 2001;149:807–18.

    Article  Google Scholar 

  25. Roman MJ, Naqvi TZ, Gardin JM, et al. American Society of Echocardiography; Society of Vascular Medicine and Biology. Clinical application of noninvasive vascular ultrasound in cardiovascular risk stratification: a report from the American Society of Echocardiography and the Society of Vascular Medicine and Biology. J Am Soc Echocardiogr. 2006;19:943–54.

    Article  PubMed  Google Scholar 

  26. Babar GS, Zidan H, Widlansky ME, et al. Impaired endothelial function in preadolescent children with type 1 diabetes. Diabetes Care. 2011;34:681–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Singh TP, Groehn H, Kazmers A. Vascular function and carotid intimal-medial thickness in children with insulin-dependent diabetes mellitus. J Am Coll Cardiol. 2003;41:661–5.

    Article  PubMed  Google Scholar 

  28. Peppa-Patrikiou M, Scordili M, Antoniou A, et al. Carotid atherosclerosis in adolescents and young adults with IDDM. Relation to urinary endothelin, albumin, free cortisol, and other factors. Diabetes Care. 1998;21:1004–7.

    Article  CAS  PubMed  Google Scholar 

  29. Schwab KO, Doerfer J, Krebs A, et al. Early atherosclerosis in childhood type 1 diabetes: role of raised systolic blood pressure in the absence of dyslipidaemia. Eur J Pediatr. 2007;166:541–8.

    Article  PubMed  Google Scholar 

  30. Krebs A, Schmidt-Trucksäss A, Doerfer J, et al. Cardiovascular risk in pediatric type 1 diabetes: sex-specific intima-media thickening verified by automatic contour identification and analyzing systems. Pediatr Diabetes. 2012;13:251–8.

    Article  CAS  PubMed  Google Scholar 

  31. Valerio G, Spagnuolo MI, Lombardi F, et al. Physical activity and sports participation in children and adolescents with type 1 diabetes mellitus. Nutr Metab Cardiovasc Dis. 2007;5:376–82.

    Article  Google Scholar 

  32. Bryden KS, Neil A, Mayou RA, et al. Eating habits, body weight, and insulin misuse. A longitudinal study of teenagers and young adults with type 1 diabetes. Diabetes Care. 1999;12:1956–60.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgiana-Aura Giurgea MD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giurgea, GA., Nagl, K., Gschwandtner, M. et al. Gender, metabolic control and carotid intima-media-thickness in children and adolescents with type 1 diabetes mellitus. Wien Klin Wochenschr 127, 116–123 (2015). https://doi.org/10.1007/s00508-014-0640-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00508-014-0640-3

Keywords

Schlüsselwörter

Navigation