Skip to main content

Postoperative immunosuppression markers and the occurrence of sepsis in patients with benign and malignant disease

Postoperative Marker der Immunsuppression und die Entstehung von Sepsis bei Patienten mit benignen und malignen Erkrankungen

Summary

Aim

To investigate associations between the postoperative immune response and the levels of extracellular circulating DNA (cDNA), C-reactive protein (CRP), neutrophil/lymphocyte (N/L) ratio, and regulatory T (Treg) cells in the peripheral blood and their role as potential predictors of postoperative septic complications.

Methods

This was a prospective observational study involving 115 adult patients who underwent elective surgery. Patients were divided into three groups: with benign disease, with malignant disease, and with malignant disease and administration of dexamethasone. Serum CRP levels, N/L ratio, monocyte human leukocyte antigen-DR (HLA-DR) expression, proportion of Treg cells, and cDNA levels were measured at different time points before and after surgery.

Results

All patients had increased CRP levels after surgery. Septic patients had higher serum CRP levels at baseline. Compared with the other groups, the dexamethasone group had significantly higher CRP levels before and after surgery, a significantly higher N/L ratio before surgery, a significantly lower rise in the N/L ratio after surgery, and a significantly lower HLA-DR expression at baseline, which remained stable after surgery. In the malignant-disease group, we observed a significant postoperative decrease in the HLA-DR expression.

Conclusions

Our results suggest that the immunosuppressive effect of surgery and the presence of a malignant disease may contribute to a higher risk of postoperative sepsis. Preoperative CRP levels may be a reliable predictor of sepsis in oncological patients.

Zusammenfassung

Ziel

der Studie war es, Zusammenhänge zwischen der postoperativen Immunantwort und den Konzentrationen der zirkulierenden extrazellulären DNA (cDNA), des CRPs, des Quotienten Neutrophile/Lymphozyten (N/L) und der regulatorischen T (Treg) Zellen im peripheren Blut sowie deren Rolle als mögliche Vorhersager von postoperativen septischen Komplikationen zu untersuchen.

Methoden

In diese prospektive Beobachtungsstudie haben wir 115 erwachsene Patienten, die einer elektiven Operation unterzogen wurden, eingeschlossen. Die Patienten wurden in 3 Gruppen eingeteilt: eine mit benigner Erkrankung, eine mit maligner Erkrankung und eine mit maligner Erkrankung und Gabe von Dexamethason. Die Serum-Konzentrationen des CRPs, der N/L Quotienten, der HLA-DR Expression der Monozyten, des Anteils der Treg Zellen und die Konzentrationen der cDNA wurden zu verschiedenen Zeitpunkten vor und nach der Operation gemessen.

Ergebnisse

Alle Patienten hatten nach der Operation erhöhte CRP Konzentrationen. Bei den Patienten mit postoperativer Sepsis waren die CRP Ausgangswerte höher. Im Vergleich mit den anderen Gruppen hatte die Gruppe der Patienten mit Dexamethason signifikant höhere CRP Werte vor und nach der Operation. Außerdem waren die N/L Quotienten präoperativ vergleichsweise signifikant erhöht, während postoperativ bei dieser Gruppe ein signifikant niedrigerer Anstieg der N/L Quotienten beobachtet wurde. Die Ausgangswerte der HLA-DR Expression waren bei diesen Patienten signifikant erniedrigt und blieben postoperativ stabil. Bei der Gruppe der Patienten mit maligner Erkrankung beobachteten wir postoperativ einen signifikanten Abfall der HLA-DR Expression.

Schlussfolgerungen

Unsere Ergebnisse lassen vermuten, dass der immunsuppressive Effekt einer Operation und das Vorliegen einer malignen Erkrankung zu einem erhöhten Risiko für das Auftreten einer postoperativen Sepsis beitragen können. Präoperative CRP Werte scheinen einen verlässlichen Vorhersagewert bezüglich Sepsis bei onkologischen Patienten zu haben.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Salo M. Effects of anaesthesia and surgery on the immune response. Acta Anaesthesiol Scand. 1992;36:202–20.

    Article  Google Scholar 

  2. Munford RS, Pugin J. Normal responses to injury prevent systemic inflammation and can be immunosuppressive. Am J Respir Crit Care Med. 2001;163:316–21.

    CAS  PubMed  Article  Google Scholar 

  3. Schulze S. Humoral and neural mediators of the systemic response to surgery. Dan Med Bull. 1996;40:365–77.

    Google Scholar 

  4. Guirao X, Lowry SF. Biologic control of injury and inflammation: much more than too little or too late. World J Surg. 1996;20:437–46.

    CAS  PubMed  Article  Google Scholar 

  5. Mannick JA, Rodrick ML, Lederer JA. The immunologic response to injury. J Am Coll Surg. 2001;193:237–44.

    CAS  PubMed  Article  Google Scholar 

  6. Murphy TJ, Paterson HM, Mannick JA, Lederer JA. Injury, sepsis, and regulation of Toll-like receptors responses. J Leukoc Biol. 2004;75:400–7.

    CAS  PubMed  Article  Google Scholar 

  7. Murphy TJ, Paterson HM, Kriynovich S, Zang Y, Kurt-Jones EA, Mannick JA, et al. Linking the “two-hit” response following injury to enhanced TLR4 reactivity. J Leukoc Biol. 2005;77:16–23.

    CAS  PubMed  Google Scholar 

  8. Hensler T, Hecker H, Heeg K, Heidecke CD, Bartels H, Barthlen W, et al. Distinct mechanisms of immunosuppression as a consequence of major surgery. Infect Immun. 1997;65:2283–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Mokart D, Capo C, Blache JL, Delpero JR, Houvenaeghel G, Martin C, et al. Early postoperative compensatory anti-inflammatory response syndrome is associated with septic complications after major surgical trauma in patients with cancer. Br J Surg. 2002;89:1450–6.

    CAS  PubMed  Article  Google Scholar 

  10. Tschoeke SK, Ertel W. Immunoparalysis after multiple trauma. Injury. 2007;38:1346–57.

    PubMed  Article  Google Scholar 

  11. Castellheim A, Brekke OL, Espevik T, Harboe M, Mollnes E. Innate immune responses to danger signals in systemic inflammatory response syndrome and sepsis. Scand J Immunol. 2009;69:479–91.

    CAS  PubMed  Article  Google Scholar 

  12. Ziegenfuss T, Wanner GA, Grass C, Bauer I, Schüder G, Kleinschmidt S, et al. Mixed agonistic-antagonistic cytokine response in whole blood from patients undergoing abdominal aortic aneurysm repair. Intensive Care Med. 1999;25:279–87.

    CAS  PubMed  Article  Google Scholar 

  13. Angele MK, Faist E. Clinical review: immunodepression in the surgical patient and increased susceptibility to infection. Critical Care. 2002;6:298–305.

    PubMed Central  PubMed  Article  Google Scholar 

  14. Flohé S, Lendemans S, Schade FU, Kreuzfelder E, Waydhas C. Influence of surgical intervention in the immune response of severely injured patients. Int Care Med. 2004;30:96–102.

    Article  Google Scholar 

  15. Dehne M, Sablotzki A, Hoffmann A, Mühling J, Dietrich FE, Hempelmann G. Alterations of acute phase reaction and cytokine production in patients following severe burn injury. Burns. 2002;28:535–42.

    PubMed  Article  Google Scholar 

  16. Mokart D, Leone M, Sannini A, Brun JP, Tison A, Delpero JR, et al. Predictive perioperative factors for developing severe sepsis after major surgery. Br J Anaesth. 2005;95:776–81.

    CAS  PubMed  Article  Google Scholar 

  17. Hase S, Weinitschke K, Fischer K, Fornara P, Honda R, Unverzagt S, et al. Monitoring peri-operative immune suppression in renal cancer patients. Oncol Rep. 2011;25:1455–64.

    CAS  PubMed  Google Scholar 

  18. Vuk-Pavlović S, Bulur PA, Lin Y, Qin R, Szumianski CL, Zhao X, et al. Immunosuppressive CD14 + HLA-DRlow/- monocytes in prostate cancer. Prostate. 2010;70:443–55.

    PubMed Central  PubMed  Google Scholar 

  19. Sapolsky RM, Romero LM, Munck AU. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev. 2000;21:55–89.

    CAS  PubMed  Google Scholar 

  20. Schwiebert LM, Schleimer RP, Radka SF, Ono SJ. Modulation of MHC class II expression in human cells by dexamethasone. Cell Immunol. 1995;165:12–9.

    CAS  PubMed  Article  Google Scholar 

  21. Le Tulzo Y, Pangault C, Amiot L, Guilloux V, Tribut O, Arvieux C, et al. Monocyte human leukocyte antigen-DR transcriptional downregulation by cortisol during septic shock. Am J Crit Care Med. 2004;169:1144–51.

    Article  Google Scholar 

  22. Sato N, Koeda K, Ikeda K, Kimura Y, Aoki K, Iwaya T, et al. Randomized study of the benefits of preoperative corticosteroid administration on the postoperative morbidity and cytokine response in patients undergoing surgery for esophageal cancer. Ann Surg. 2002;236:184–90.

    PubMed Central  PubMed  Article  Google Scholar 

  23. Annane D, Bellissant E, Bollaert PE, Briegel J, Confalonieri M, de Gaudio R, et al. Corticosteroids in the treatment of severe sepsis and septic shock in adults. JAMA. 2009;301:2362–75.

    CAS  PubMed  Article  Google Scholar 

  24. Devaraj S, Rogers J, Jialal I. Statins and biomarkers of inflammation. Curr Atheroscler Rep. 2007;9:33–41.

    CAS  PubMed  Article  Google Scholar 

  25. Quist-Paulsen P. Statins and inflammation: an update. Curr Opin Cardiol. 2010;25:399–405.

    PubMed  Article  Google Scholar 

  26. Bergmann M, Sautner T. Immunomodulatory effects of vasoactive catecholamines. Wien Klin Wochenschr. 2002;114:752–61.

    CAS  PubMed  Google Scholar 

  27. Oberbeck R. Catecholamines: physiological immunomodulators during health and illness. Curr Med Chem. 2006;13:1979–89.

    CAS  PubMed  Article  Google Scholar 

  28. de Jager CPC, van Wijk PT, Mathoera RB, de Jong-Leuvenink J, van der Poll T, Wever PC. Lymphocytopenia and neutrophil-lymphocyte count ratio predict bacteremia better than conventional infection markers in an emergency care unit. Crit Care. 2010;14:R192.

    PubMed Central  PubMed  Article  Google Scholar 

  29. Gang F, Guorong L, An Z, Anne GP, Christian G, Jacques T. Prediction of clear cell renal cell carcinoma by integrity of cell-free DNA in serum. Urology. 2010;75:262–5.

    PubMed  Article  Google Scholar 

  30. MacConmara MP, Maung AA, Fujimi S, McKenna AM, Delisle A, Lapchak PH, et al. Increased CD4 + CD25 + T regulatory cell activity in trauma patients depresses protective Th1 immunity. Ann Surg. 2006;244:514–23.

    PubMed Central  PubMed  Google Scholar 

  31. Knaus WA, Wagner DP, Draper EA, Zimmerman JE, Bergner M, Bastos PG. The APACHE III prognostic system (Risk prediction of hospital mortality for critically ill hospitalized Adults). Chest. 1991;100:1619–36.

    CAS  PubMed  Article  Google Scholar 

  32. American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference: definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med. 1992;20:864–74.

  33. Elebute EA, Stoner HB. The grading of sepsis. Br J Surg. 1983;70:29–31.

    CAS  PubMed  Article  Google Scholar 

  34. Pilz G, Kaab S, Kreuzer E, Werdan K. Evaluation of definition and parameters for sepsis assessment in patients after cardiac surgrey. Infection. 1994;22:8–17.

    CAS  PubMed  Article  Google Scholar 

  35. Kellner P, Prondzinsky R, Pallman L, Siegmann S, Unverzagt S, Lemm H. Predictive value of outcome scores in patients suffering from cardiogenic shock complicating AMI. Med Klin Intensivmed Notfmed. 2013;108:666–74.

    CAS  PubMed  Article  Google Scholar 

  36. Gornik I, Wagner J, Gasparović V, Lauc G, Gornik O. Free serum DNA is an early predictor of severity in acute pancreatitis. Clin Biochem. 2009;42:38–43.

    CAS  PubMed  Article  Google Scholar 

  37. Lam NY, Rainer TH, Chan LY, Joynt GM, Lo YM. Time course of early and late changes in plasma DNA in trauma patients. Clin Chem. 2003;49:1286–91.

    CAS  PubMed  Article  Google Scholar 

  38. Chiu TW, Young R, Chan LY, Burd A, Lo DY. Plasma cell-free DNA as an indicator of severity injury in burn patients. Clin Chem Lab Med. 2006;44:13–7.

    CAS  PubMed  Article  Google Scholar 

  39. Rhodes A, Wort SJ, Thomas H, Collinson P, Bennett ED. Plasma DNA concentration as a predictor of mortality and sepsis in critically ill patients. Crit Care. 2006;10:R60.

    PubMed Central  PubMed  Article  Google Scholar 

  40. Banki F, Mason RJ, Oh D, Hagen JA, DeMeester SR, Lipham JC, et al. Plasma DNA as a molecular marker for completeness of resection and recurrent disease in patients with esophageal cancer. Arch Surg. 2007;142:533–8.

    CAS  PubMed  Article  Google Scholar 

  41. Banki F, Mason RJ, Hagen JA, Demeester SR, Lipham JC, Danenberg K, et al. Plasma DNA: a molecular marker of surgical insult and postoperative recovery in esophageal cancer. Eur Surg Res. 2008;40:273–8.

    CAS  PubMed  Article  Google Scholar 

  42. Holdenrieder S, Burges A, Reich O, Spelsberg FW, Stieber P. DNA integrity in plasma and serum of patients with malignant and benign diseases. Am N Y Acad Sci. 2008;1137:162–70.

    CAS  Article  Google Scholar 

  43. Assadullah K, Woiciechowsky C, Döcke WD, Liebenthal C, Wauer H, Kox W, et al. Immunodepression following neurosurgical procedures. Crit Care Med. 1995;23:1976–83.

    Article  Google Scholar 

  44. Woiciechowsky C, Assadullah K, Nestler D, Eberhardt B, Platzer C, Schöning B, et al. Sympathetic activation triggers systemic interleukin-10 release in immunodepression induced by brain injury. Nat Med. 1998;4:808–13.

    CAS  PubMed  Article  Google Scholar 

  45. Woiciechowsky C, Schöning B, Lanksch WR, Volk HD, Döcke WD. Mechanisms of brain-mediated systemic anti-inflammatory syndrome causing immunodepression. J Mol Med (Berl). 1999;77:769–80.

    CAS  Article  Google Scholar 

  46. Haga Y, Beppu T, Doi K, Nozawa F, Mugita N, Ikei S, et al. Systemic inflammatory response syndrome and organ dysfunction following gastrointestinal surgery. Crit Care Med. 1997;25:1994–2000.

    CAS  PubMed  Article  Google Scholar 

  47. Mokart D, Textoris J, Chow-Chine L, Braun JP, Sannini A, Turrini O, et al. HLA-DR and B7-2 (CD86) monocyte expressions after major cancer surgery: profile in sepsis. Minerva Anestesiol. 2011;77:522–7.

    CAS  PubMed  Google Scholar 

  48. Handy JM, Scott AJ, Cross AM, Sinha P, O’Dea KP, Takata M. HLA-DR expression and differential trafficking of monocyte subset following low to intermediate risk surgery. Anaesthesia. 2010;65:27–35.

    CAS  PubMed  Article  Google Scholar 

  49. Wu Z, Kong X, Zhang T, Ye J, Fang Z, Yang X. Pseudoephedrine/ephedrine shows potent anti-inflammatory activity against TNF-α-mrdiated acute liver failure induced by lipopolysaccharide/D-galactosamine. Eur J Pharmacol. 2014;724:112–21.

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgments

The authors would like to kindly thank Ministry of Science, Education and Sports of the Republic of Croatia for their generous support (Grant number: 219-0000000-3362).

Conflict of interest

The authors declare that there are no actual or potential conflicts of interest in relation to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerko Barbić MD, PhD.

Additional information

Tamara Alkhamis and Dubravka Ivić contributed equally to this work.This research was supported by the Ministry of Science, Education and Sports of the Republic of Croatia, Grant number219-0000000-3362.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alkhamis, T., Ivić, D., Wagner, J. et al. Postoperative immunosuppression markers and the occurrence of sepsis in patients with benign and malignant disease. Wien Klin Wochenschr 126, 774–784 (2014). https://doi.org/10.1007/s00508-014-0613-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00508-014-0613-6

Keywords

  • C-reactive protein
  • Neutrophils
  • Lymphocytes
  • Immunity
  • Postoperative period

Schlüsselwörter

  • C-reaktives Protein
  • Neutrophile
  • Lymphozyten
  • Immunstatus
  • Postoperative Phase