Wiener klinische Wochenschrift

, Volume 126, Issue 11–12, pp 341–346 | Cite as

Evaluation of oxidant and antioxidant status and relation with prolidase in systemic sclerosis

  • Esen Savas
  • Nur Aksoy
  • Yavuz Pehlivan
  • Zeynel Abidin Sayiner
  • Zeynel Abidin Öztürk
  • Suzan Tabur
  • Mustafa Örkmez
  • Ahmet Mesut Onat
original article

Summary

Purpose

Systemic sclerosis (SSc) is a disease characterized by fibrosis of the skin and organs; it is associated with diffuse fibroproliferative microangiopathy and autoimmune background. The studies have shown that the production of excessive free radicals and increased collagen synthesis by the fibroblasts play an important role in the pathophysiology of SSc. Prolidase is an important marker in collagen turnover. We aimed to compare total oxidant status (TOS), total antioxidant status (TAS), oxidative stress index (OSI), and prolidase levels of SSc patients and healthy controls. We also investigated the relationship between prolidase and oxidative stress.

Methods

A total of 38 SSc patients and 33 healthy volunteers were included in the study. Serum TAS, TOS, and prolidase activity were evaluated in the groups.

Results

It was found that the TOS and OSI levels of patients were higher than those in the control group (P = 0.012 and 0.015, respectively), whereas TAS was not significantly different between groups (P = 0.451). Prolidase activity was lower in patients than in controls (P = 0.008). There was a weak correlation between prolidase and OSI in patients. It was found that TAS was lower by marginal significance in the patients with lung and gastrointestinal tract (GT) involvement than the patients without those (P = 0.067 and 0.059, respectively).

Conclusions

Our data suggest that oxidative stress is increased in SSc. TAS is decreased in patients with lung and GT involvement. These results support that antioxidant treatment may be useful in SSc, especially in patients with lung and GT involvement. Antioxidant treatment may prevent organ involvement in SSc. TAS may be a marker that predicts the risk of involvement of a specific organ. In addition, prolidase may be a marker of SSc.

Keywords

Scleroderma Total oxidant status Prolidase Lung Gastrointestinal tract 

Bewertung des Oxidant- und Antioxidant-Status sowie der Beziehung zur Prolidase bei systemischer Sklerose

Zusammenfassung

Ziel der Studie

Die systemische Sklerose (SSc) ist eine Erkrankung, die durch Fibrose der Haut und der Organe gekennzeichnet ist; sie ist vergesellschaftet mit einer diffusen fibroproliferativen Mikroangiopathie und einem autoimmunen Hintergrund. Es konnte in verschiedenen Studien gezeigt werden, dass die überschießende Produktion von freien Radikalen und die gesteigerte Kollagensynthese durch Fibroblasten eine wichtige Rolle in der Pathophysiologie der SSc spielen. Prolidase ist ein wichtiger Marker des Turnovers von Kollagen. Ziel unserer Studie war es, den gesamten oxidativen Status (TOS), den gesamten antioxidativen Status (TAS), den oxidativen Stress Index (OSI) und die Serum-Konzentrationen der Prolidase bei Patienten mit SSc und bei gesunden Kontrollen zu erheben. Außerdem untersuchten wir, ob ein Zusammenhang zwischen Prolidase und oxidativem Stress besteht.

Methodik

38 Patienten mit SSc und 33 gesunde Freiwillige wurden in die Studie aufgenommen. Serum TAS, TOS und Prolidase-Aktivität wurden in beiden Gruppen erhoben.

Ergebnisse

Die TOS und OSI waren bei den Patienten höher als bei der Kontrolle (P = 0,012 beziehungsweise 0,015). Die TAS unterschied sich allerdings nicht signifikant zwischen beiden Gruppen (P = 0,451). Die Aktivität der Prolidase war bei den Patienten niedriger als bei den Gesunden (P = 0,008). Bei den Patienten bestand eine schwache Korrelation zwischen Prolidase und dem OSI. Bei den Patienten mit Beteiligung der Lunge und des Gastrointestinaltraktes (GI-Trakt) waren die TAS grenzwertig signifikant niedriger (P = 0,067 beziehungsweise 0,059) als bei den Patienten ohne Befall dieser Organe.

Schlußfolgerungen

Unsere Ergebnisse lassen vermuten, dass der oxidative Stress bei SSc erhöht ist. TAS ist bei Beteiligung der Lungen und des GI-traktes erniedrigt. Eine antioxidative Behandlung könnte daher bei SSc – vor allem wenn Lungen und GI-Trakt befallen sind, von Nutzen sein. Diese Behandlung könnte der Organbeteiligung vorbeugen. TAS könnte ein Marker sein, der das Risiko des Befalls eines bestimmten Organs vorhersagt. Außerdem könnte die Prolidase ein Marker der SSc sein.

Schlüsselwörter

Sklerodermie Totaler Oxidant-Status Prolidase Lungen Gastrointestinaltrakt 

Notes

Conflict of interest

The authors have no conflicts of interest.

References

  1. 1.
    Abraham DJ, Varga J. Scleroderma: from cell and molecular mechanisms to disease models. Trends Immunol. 2005;26:587–95.PubMedCrossRefGoogle Scholar
  2. 2.
    Gabrielli A, Svegliati S, Moroncini G, Pomponio G, Santillo M, Avvedimento EV. Oxidative stress and the pathogenesis of scleroderma: the Murrel’s hypothesis revisited. Semin Immunopathol. 2008;30:329–37.PubMedCrossRefGoogle Scholar
  3. 3.
    Murrell GAC, Francis MJO, Bromley L. Modulation of fibroblast proliferation by oxygen free radicals. Biochem J. 1990;265:659–65.PubMedCentralPubMedGoogle Scholar
  4. 4.
    Hinchcliff M, Varga J. Systemic sclerosis/scleroderma: a treatable multisystem disease. Am Fam Physician. 2008;78:961–8.PubMedGoogle Scholar
  5. 5.
    Eckes B, Mauch C, Huppe G, Krieg T. Differential regulation of transcription and transcript stability of pro-alpha 1(I) collagen and fibronectin in activated fibroblasts derived from patients with systemic scleroderma. Biochem J. 1996;315:549–54.PubMedCentralPubMedGoogle Scholar
  6. 6.
    Myara I, Charpentier C, Lemonnier A. Minireview: prolidase and prolidase deficiency. Life Sci. 1984;34:1985–98.PubMedCrossRefGoogle Scholar
  7. 7.
    Surazynski A, Miltyk W, Palka J, Phang JM. Prolidase-dependent regulation of collagen biosynthesis. Amino Acids. 2008;35:731–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Masi AT, Rodnan GP, Medsger TA, Jr, Altman RD, D’Angelo WA, Fries JF, et al. Preliminary criteria for the classification of systemic sclerosis. Arthritis Rheum. 1980;23:581–90.CrossRefGoogle Scholar
  9. 9.
    Clements P, Lachenbruch P, Siebold J, White B, Weiner S, Martin R, et al. Inter and intraobserver variability of total skin thickness score (modified Rodnan TSS) in systemic sclerosis. J Rheumatol. 1995;22:1281–5.PubMedGoogle Scholar
  10. 10.
    Valentini G, Della Rossa A, Bombardieri S, Bencivelli W, Silman AJ, D’Angelo S, et al. European multicenter study to define disease activity criteria for systemic sclerosis. II. Identification of disease activity variables and development of preliminary activity indexes. Ann Rheum Dis. 2001;60:592–8.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Medsger TA, Jr, Silman AJ, Steen VD, Black CM, Akesson A, Bacon PA, et al. A disease severity scale for systemic sclerosis: development and testing. J Rheumatol. 1999;26:2159–67.PubMedGoogle Scholar
  12. 12.
    Myara I, Charpentier C, Lemonnier A. Optimal conditions for prolidase assay by praline colorimetric determination: application to iminodipeptiduria. Clin Chim Acta. 1982;125:193–205.PubMedCrossRefGoogle Scholar
  13. 13.
    Chinard FP. Photometric estimation of proline and ornithine. J Biol Chem. 1952;199:91–5.PubMedGoogle Scholar
  14. 14.
    Erel OA. Novel automated method to measure total antioxidant response against potent free radical reactions. Clin Biochem. 2004;37:112–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Koc S, Aksoy N, Bilinc H, Duygu F, Uysal IO, Ekinci A, et al. Paraoxonase and arylesterase activity and total oxidative/antioxidative status in patients with chronic adenotonsillitis. Int J Pediatr Otorhinolaryngol. 2011;75:1364–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Erel OA. New automated colorimetric method for measuring total oxidant status. Clin Biochem. 2005;38:1103–11.PubMedCrossRefGoogle Scholar
  17. 17.
    Kosecik M, Erel O, Sevinc E, Selek S. Increased oxidative stress in children exposed to passive smoking. Int J Cardiol. 2005;100:61–4.PubMedCrossRefGoogle Scholar
  18. 18.
    Yamamoto T, Katayama I, Nishioka K. Nitric oxide production and inducible nitric oxide synthase expression in systemic sclerosis. J Rheumatol. 1998;25(2):314–7.PubMedGoogle Scholar
  19. 19.
    Sambo P, Baroni SS, Luchetti M, Paroncini P, Dusi S, Orlandini G, et al. Oxidative stress in scleroderma: maintenance of scleroderma fibroblast phenotype by the constitutive up-regulation of reactive oxygen species generation through the NADPH oxidase complex pathway. Arthritis Rheum. 2001;44(11):2653–64.PubMedCrossRefGoogle Scholar
  20. 20.
    Stein CM, Tanner SB, Awad JA, Roberts LJ 2nd, Morrow JD. Evidence of free radical-mediated injury (isoprostane overproduction) in scleroderma. Arthritis Rheum. 1996;39(7):1146–50.PubMedCrossRefGoogle Scholar
  21. 21.
    Herrick AL, Matucci CM. The emerging problem of oxidative stress and the role of antioxidants in systemic sclerosis. Clin Exp Rheumatol. 2001;19(1):4–8. Review.PubMedGoogle Scholar
  22. 22.
    Simonini G, Pignone A, Generini S, Falcini F, Cerinic MM. Emerging potentials for an antioxidant therapy as a new approach to the treatment of systemic sclerosis. Toxicology. 2000;155(1–3):1–15.PubMedGoogle Scholar
  23. 23.
    Tikly M, Channa K, Theodorou P, Gulumian M. Lipid peroxidation and trace elements in systemic sclerosis. Clin Rheumatol. 2006;25(3):320–4.PubMedCrossRefGoogle Scholar
  24. 24.
    Kalin R, Righi A, Del Rosso A, Bagchi D, Generini S, Cerinic MM, et al. Activin, a grape seed-derived proanthocyanidin extract, reduces plasma levels of oxidative stress and adhesion molecules (ICAM-1, VCAM-1 and E-selectin) in systemic sclerosis. Free Radic Res. 2002;36(8):819–25.PubMedCrossRefGoogle Scholar
  25. 25.
    Ogawa F, Shimizu K, Muroi E, Hara T, Sato S. Increasing levels of serum antioxidant status, total antioxidant power, in systemic sclerosis. Clin Rheumatol. 2011;30:921–5.PubMedCrossRefGoogle Scholar
  26. 26.
    Rosato E, Rossi C, Molinaro I, Giovannetti A, Pisarri S, Salsano F. Long-term N-acetylcysteine therapy in systemic sclerosis interstitial lung disease: a retrospective study. Int J Immunopathol Pharmacol. 2011;24(3):727–33.PubMedGoogle Scholar
  27. 27.
    Ogawa F, Shimizu K, Hara T, Muroi E, Komura K, Takenaka M, et al. Autoantibody against one of the antioxidant repair enzymes, methionine sulfoxide reductase A, in systemic sclerosis: association with pulmonary fibrosis and vascular damage. Arch Dermatol Res. 2010;302:27–35.PubMedCrossRefGoogle Scholar
  28. 28.
    Musellim B, Ikitimur H, Uzun H, Ongen G. The oxidant-antioxidant balance in systemic sclerosis cases with interstitial lung involvement. Rheumatol Int. 2006;27(2):163–7.PubMedCrossRefGoogle Scholar
  29. 29.
    Gabriele S, Alberto P, Sergio G, Fernanda F, Marco MC. Emerging potentials for an antioxidant therapy as a new approach to the treatment of systemic sclerosis. Toxicology. 2000;155:1–15.PubMedCrossRefGoogle Scholar
  30. 30.
    Denton CP, Bunce TD, Dorado MB, Roberts Z, Wilson H, Howell K. Probucol improves symptoms and reduces lipoprotein oxidation susceptibility in patients with Raynaud’s phenomenon. Rheumatology (Oxford). 1999;38(4):309–15.CrossRefGoogle Scholar
  31. 31.
    Ocakci A, Coskun O, Tumkaya L, Kanter M, Gurel A, Hosnuterd M, et al. Beneficial effects of ebselen on corrosive esophageal burns of rats. Int J Pediatr Otorhinolaryngol. 2006;70(1):45–52.PubMedCrossRefGoogle Scholar
  32. 32.
    Altindag O, Erel O, Aksoy N, Selek S, Celik H, Karaoglanoglu M. Increased oxidative stress and its relation with collagen metabolism in knee osteoarthritis. Rheumatol Int. 2007;27:339–44.PubMedCrossRefGoogle Scholar
  33. 33.
    Yildiz A, Demirbag R, Yilmaz R, Gur M, Altiparmak IH, Akyol S, et al. The association of serum prolidase activity with the presence and severity of coronary artery disease. Coron Artery Dis. 2008;19(5):319–25.PubMedCrossRefGoogle Scholar
  34. 34.
    Shrinath M, Walter JH, Haeney M, Couriel J, Lewis M, Herrick A. Prolidase deficiency and systemic lupus erythematosus. Arch Dis Child. 1997;76(5):441–4.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Langberg H, Skovgaard D, Asp S, Kjaer M. Time pattern of exercise-induced changes in type I collagen turnover after prolonged endurance exercise in humans. Calcif Tissue Int. 2000;67(1):41–4.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • Esen Savas
    • 1
  • Nur Aksoy
    • 2
  • Yavuz Pehlivan
    • 3
  • Zeynel Abidin Sayiner
    • 4
  • Zeynel Abidin Öztürk
    • 5
  • Suzan Tabur
    • 6
  • Mustafa Örkmez
    • 2
  • Ahmet Mesut Onat
    • 3
  1. 1.Division of Social Medicine, Department of Internal MedicineGaziantep University Faculty of MedicineSahinbey, GaziantepTurkey
  2. 2.Department of BiochemistryGaziantep University Faculty of MedicineGaziantepTurkey
  3. 3.Division of Rheumatology, Department of Internal MedicineGaziantep University Faculty of MedicineGaziantepTurkey
  4. 4.Department of Internal MedicineGaziantep University Faculty of MedicineGaziantepTurkey
  5. 5.Division of Geriatric Medicine, Department of Internal MedicineGaziantep University Faculty of MedicineGaziantepTurkey
  6. 6.Division of Endocrinology, Department of Internal MedicineGaziantep University Faculty of MedicineGaziantepTurkey

Personalised recommendations