Wiener klinische Wochenschrift

, Volume 126, Supplement 1, pp 32–36 | Cite as

In vitro efficacy of curcumin on Trichomonas vaginalis

  • Benjamin Wachter
  • Michael Syrowatka
  • Andreas Obwaller
  • Julia Walochnik
original article


Trichomonosis, the disease caused by the protozoan parasite Trichomonas vaginalis, is the most common curable sexually transmitted disease with 174 million cases per year worldwide. The emerging resistance against the current standard therapy with metronidazole is pushing the search for alternative drugs. The purpose of this study was to determine the efficacy of curcumin, a derivate of Curcuma longa, on T. vaginalis. The effective concentrations (ECs) were evaluated using three strains of T. vaginaliswith different metronidazole susceptibilities (ATCC 30001, ATCC 30236 and ATCC 50138) and dilution series of curcumin in 24-well microtitre assays. Curcumin was shown to be highly effective against T. vaginalis, and the susceptibility of the different strains was not affected by an existing resistance to metronidazole. After 24 h of incubation, the EC50 ranged from 73.0 to 105.8 µg/ml and the EC90 from 216.3 to 164.9 µg/ml. In all strains tested, a 100 % eradication of all trichomonal cells within 24 h was reached at a concentration of 400 µg/ml curcumin, the 50-fold concentration still being very well tolerated by human mucosa. Altogether, curcumin seems to be a promising candidate for topical treatment of trichomonosis.


Trichomonas vaginalis Protozoa Curcumin Turmeric Metronidazole In vitro 

In vitro-Wirksamkeit von Curcumin gegen Trichomonas vaginalis


Trichomonas vaginalis ist der Erreger der Trichomonose, der mit weltweit etwa 174 Mio. Neuinfektionen pro Jahr häufigsten heilbaren sexuell übertragbaren Erkrankung. Das zunehmende Auftreten von Stämmen, die gegen das derzeitige Standardtherapeutikum Metronidazol resistent sind, erregt Besorgnis. Ziel dieser Studie war es, die Wirksamkeit von Curcumin, einer aus der Wurzel der Pflanze Curcuma longa gewonnenen Substanz, auf T. vaginalis zu untersuchen. Hierfür wurden 3 T. vaginalisStämme unterschiedlicher Metronidazol-Resistenz (ATCC 30001, ATCC 30236 und ATCC 50138) auf ihre Empfänglichkeit gegenüber Curcumin in einem 24-well Mikrotiterplatten-System untersucht. Curcumin erwies sich als ausgesprochen wirksam gegen T. vaginalis, unabhängig von einer vorliegenden Metronidazol-Resistenz. Nach 24 h Inkubation lagen die EC50-Werte bei 73,0 bis 105,8 µg/ml und die EC90-Werte bei 216,3 bis 164,9 µg/ml. Alle 3 untersuchten Trichomonaden-Stämme konnten mit 400 µg/ml Curcumin innerhalb von 24 h vollständig abgetötet werden, die 50fache Konzentration wird von menschlicher Mukosa gut vertragen. Insgesamt erscheint Curcumin ein vielversprechender Kandidat für die topische Behandlung der Trichomonose.


Trichomonas vaginalis Protozoa Curcumin Gelbwurz Metronidazol In vitro 



The authors would like to thank the members of the workgroup Molecular Parasitology of the Institute of Specific Prophylaxis and Tropical Medicine for their technical assistance.

Conflict of interest

Orphanidis Pharma Research is patent holder of a formulation comprising curcumin and PEG and license holder of a cosmetic product comprising curcumin. Benjamin Wachter, Michael Syrowatka and Julia Walochnik have no conflicts of interest to declare.

Ethical approval

Not applicable.


  1. 1.
    WHO. Global prevalence and incidence of selected curable sexually transmitted diseases. 2001. Accessed 20 Dec 2013.
  2. 2.
    Sutton M, Sternberg M, Koumans EH, et al. The prevalence of Trichomonas vaginalis infection among reproductive-age women in the United States, 2001–2004. Clin Infect Dis. 2007;45(10):1319–26.PubMedCrossRefGoogle Scholar
  3. 3.
    Geelen TH, Hoebe CJ, Dirks A, et al. Low positivity rate after systematic screening for Trichomonas vaginalis in three patient cohorts from general practitioners, STI clinic and a national population-based chlamydia screening study. Sex Transm Infect. 2013;89(6):532–4.PubMedCrossRefGoogle Scholar
  4. 4.
    Allsworth JE, Ratner JA, Peipert JF. Trichomoniasis and other sexually transmitted infections: results from the 2001–2004 National Health and Nutrition Examination Surveys. Sex Transm Dis. 2009;36(12):738–44.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Shew ML, Fortenberry JD, Tu W, et al. Association of condom use, sexual behaviors, and sexually transmitted infections with the duration of genital human papillomavirus infection among adolescent women. Arch Pediatr Adolesc Med. 2006;160(2):151–6.PubMedCrossRefGoogle Scholar
  6. 6.
    Gottlieb SL, Douglas JM Jr, Foster M, et al. Incidence of herpes simplex virus type 2 infection in 5 sexually transmitted disease (STD) clinics and the effect of HIV/STD risk-reduction counseling. J Infect Dis. 2004;190(6):1059–67.PubMedCrossRefGoogle Scholar
  7. 7.
    McClelland RS, Sangare L, Hassan WM, et al. Infection with Trichomonas vaginalis increases the risk of HIV-1 acquisition. J Infect Dis. 2007;195(5):698–702.PubMedCrossRefGoogle Scholar
  8. 8.
    Van Der Pol B, Kwok C, Pierre-Louis B, et al. Trichomonas vaginalis infection and human immunodeficiency virus acquisition in African women. J Infect Dis. 2008;197(4):548–54.Google Scholar
  9. 9.
    Kissinger P, Amedee A, Clark RA, et al. Trichomonas vaginalis treatment reduces vaginal HIV-1 shedding. Sex Transm Dis. 2009;36(1):11–6.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Schmid G, Narcisi E, Mosure D, et al. Prevalence of metronidazole-resistant Trichomonas vaginalis in a gynecology clinic. J Reprod Med. 2001;46(6):545–9.PubMedGoogle Scholar
  11. 11.
    Petrin D, Delgaty K, Bhatt R, et al. Clinical and microbiological aspects of Trichomonas vaginalis. Clin Microbiol Rev. 1998;11(2):300–17.PubMedCentralPubMedGoogle Scholar
  12. 12.
    Hager WD. Treatment of metronidazole-resistant Trichomonas vaginalis with tinidazole: case reports of three patients. Sex Transm Dis. 2004;31(6):343–5.PubMedCrossRefGoogle Scholar
  13. 13.
    Kulda J. Trichomonads, hydrogenosomes and drug resistance. Int J Parasitol. 1999;29(2):199–212.PubMedCrossRefGoogle Scholar
  14. 14.
    Sobel JD, Nagappan V, Nyirjesy P. Metronidazole-resistant vaginal trichomoniasis—an emerging problem. N Eng J Med. 1999;341(4):292–3.CrossRefGoogle Scholar
  15. 15.
    Narcisi EM, Secor WE. In vitro effect of tinidazole and furazolidone on metronidazole-resistant Trichomonas vaginalis. Antimicrob Agents Chemother. 1996;40(5):1121–5.PubMedCentralPubMedGoogle Scholar
  16. 16.
    Kuriyama A, Jackson JL, Doi A, et al. Metronidazole-induced central nervous system toxicity: a systematic review. Clin Neuropharmacol. 2011;34(6):241–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Chacko J, Pramod K, Sinha S, et al. Clinical, neuroimaging and pathological features of 5-nitroimidazole-induced encephalo-neuropathy in two patients: insights into possible pathogenesis. Neurol India. 2011;59(5):743–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Connor TH, Stoeckel M, Evrard J, et al. The contribution of metronidazole and two metabolites to the mutagenic activity detected in urine of treated humans and mice. Cancer Res. 1977;37(2):629–33.PubMedGoogle Scholar
  19. 19.
    Lindmark DG, Muller M. Antitrichomonad action, mutagenicity, and reduction of metronidazole and other nitroimidazoles. Antimicrob Agents Chemother. 1976;10(3):476–82.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Koss CA, Baras DC, Lane SD, et al. Investigation of metronidazole use during pregnancy and adverse birth outcomes. Antimicrob Agents Chemother. 2012;56(9):4800–5.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Kazy Z, Puho E, Czeizel AE. Teratogenic potential of vaginal metronidazole treatment during pregnancy. Eur J Obstet Gynecol Reprod Biol. 2005;123(2):174–8.Google Scholar
  22. 22.
    Centers for Disease Control and Prevention, Workowski KA, et al. Sexually transmitted diseases treatment guidelines, 2006. MMWR Recomm Rep. 2006;55(RR-11):1–94.PubMedGoogle Scholar
  23. 23.
    Blaha C, Duchene M, Aspock H, et al. In vitro activity of hexadecylphosphocholine (miltefosine) against metronidazole-resistant and -susceptible strains of Trichomonas vaginalis. J Antimicrob Chemother. 2006;57(2):273–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Kranzler M. Pentamycin—a new option for the treatment of infections with Trichomonas vaginalis? Diploma thesis, University of Vienna; 2011. eBook 978-3-656-14565-32011.Google Scholar
  25. 25.
    Sharma RA, Gescher AJ, Steward WP. Curcumin: the story so far. Eur J Cancer. 2005;41(13):1955–68.PubMedCrossRefGoogle Scholar
  26. 26.
    Buescher R, Yang L. Turmeric. In: Lauro GJ, Francis FJ, editors. Natural food colorants. New York: Marcel Dekker; 2000.Google Scholar
  27. 27.
    Perez-Arriaga L, Mendoza-Magana ML, Cortes-Zarate R, et al. Cytotoxic effect of curcumin on Giardia lamblia trophozoites. Acta Trop. 2006;98(2):152–61.PubMedCrossRefGoogle Scholar
  28. 28.
    Khalafalla RE, Muller U, Shahiduzzaman M, et al. Effects of curcumin (diferuloylmethane) on Eimeria tenella sporozoites in vitro. Parasitol Res. 2011;108(4):879–86.PubMedCrossRefGoogle Scholar
  29. 29.
    Mimche PN, Taramelli D, Vivas L. The plant-based immunomodulator curcumin as a potential candidate for the development of an adjunctive therapy for cerebral malaria. Malar J. 2011;10(Suppl. 1):S10.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Shahiduzzaman M, Dyachenko V, Khalafalla RE, et al. Effects of curcumin on Cryptosporidium parvum in vitro. Parasitol Res. 2009;105(4):1155–61.PubMedCrossRefGoogle Scholar
  31. 31.
    Koide T, Nose M, Ogihara Y, et al. Leishmanicidal effect of curcumin in vitro. Biol Pharm Bull. 2002;25(1):131–3.PubMedCrossRefGoogle Scholar
  32. 32.
    Changtam C, de Koning HP, Ibrahim H, et al. Curcuminoid analogs with potent activity against Trypanosoma and Leishmania species. Eur J Med Chem. 2010;45(3):941–56.PubMedCrossRefGoogle Scholar
  33. 33.
    Allam G. Immunomodulatory effects of curcumin treatment on murine Schistosomiasis mansoni. Immunobiology. 2009;214(8):712–27.PubMedCrossRefGoogle Scholar
  34. 34.
    Jordan WC, Drew CR. Curcumin—a natural herb with anti-HIV activity. J Natl Med Assoc. 1996;88(6):333.PubMedCentralPubMedGoogle Scholar
  35. 35.
    Barthelemy S, Vergnes L, Moynier M, et al. Curcumin and curcumin derivatives inhibit Tat-mediated transactivation of type 1 human immunodeficiency virus long terminal repeat. Res Virol. 1998;149(1):43–52.PubMedCrossRefGoogle Scholar
  36. 36.
    Yadav VS, Mishra KP, Singh DP, et al. Immunomodulatory effects of curcumin. Immunopharmacol Immunotoxicol. 2005;27(3):485–97.PubMedCrossRefGoogle Scholar
  37. 37.
    Chainani-Wu N. Safety and anti-inflammatory activity of curcumin: a component of tumeric (Curcuma longa). J Altern Complement Med. 2003;9(1):161–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Wei QY, Chen WF, Zhou B, et al. Inhibition of lipid peroxidation and protein oxidation in rat liver mitochondria by curcumin and its analogues. Biochim Biophys Acta. 2006;1760(1):70–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Devasena T, Rajasekaran KN, Gunasekaran G, et al. Anticarcinogenic effect of bis-1,7-(2-hydroxyphenyl)-hepta-1,6-diene-3,5-dione a curcumin analog on DMH-induced colon cancer model. Pharmacol Res. 2003;47(2):133–40.PubMedCrossRefGoogle Scholar
  40. 40.
    Srivivasan A, Menon VP, Periaswamy V, et al. Protection of pancreatic beta-cell by the potential antioxidant bis-o-hydroxycinnamoyl methane, analogue of natural curcuminoid in experimental diabetes. J Pharm Pharm Sci. 2003;6(3):327–33.PubMedGoogle Scholar
  41. 41.
    Clark CG, Diamond LS. Methods for cultivation of luminal parasitic protists of clinical importance. Clin Microbiol Rev. 2002;15(3):329–41.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Fang HY, Chen SB, Guo DJ, et al. Proteomic identification of differentially expressed proteins in curcumin-treated MCF-7 cells. Phytomedicine. 2011;18(8–9):697–703.PubMedCrossRefGoogle Scholar
  43. 43.
    Wang L, Wang L, Song R, et al. Targeting sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 2 by curcumin induces ER stress-associated apoptosis for treating human liposarcoma. Mol Cancer Ther. 2011;10(3):461–71.PubMedCrossRefGoogle Scholar
  44. 44.
    He ZY, Shi CB, Wen H, et al. Upregulation of p53 expression in patients with colorectal cancer by administration of curcumin. Cancer Investig. 2011;29(3):208–13.CrossRefGoogle Scholar
  45. 45.
    Elad S, Meidan I, Sellam G, et al. Topical curcumin for the prevention of oral mucositis in pediatric patients: case series. Altern Ther Health Med. 2013;19(3):21–4.PubMedGoogle Scholar
  46. 46.
    Manifar S, Obwaller A, Gharehgozloo A, et al. Curcumin gel in the treatment of minor aphthous ulcer: a randomized, placebo-controlled trial. J Med Plants. 2012;11(41):40–5.Google Scholar
  47. 47.
    Heng MC. Wound healing in adult skin: aiming for perfect regeneration. Int J Dermatol. 2011;50(9):1058–66.PubMedCrossRefGoogle Scholar
  48. 48.
    Helson L. Curcumin (diferuloylmethane) delivery methods: a review. Biofactors. 2013;39(1):21–6.Google Scholar
  49. 49.
    Patel MB, Mandal S, Rajesh KS. Formulation and kinetic modeling of curcumin loaded intranasal mucoadhesive microemulsion. J Pharm Bioallied Sci. 2012;4(Suppl. 1):S81–3.PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Berginc K, Skalko-Basnet N, Basnet P, et al. Development and evaluation of an in vitro vaginal model for assessment of drug’s biopharmaceutical properties: curcumin. AAPS PharmSciTech. 2012;13(4):1045–53.PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Di Pierro F, Rapacioli G, Di Maio EA, et al. Comparative evaluation of the pain-relieving properties of a lecithinized formulation of curcumin (Meriva()), nimesulide, and acetaminophen. J Pain Res. 2013;6:201–5.PubMedGoogle Scholar
  52. 52.
    Kulac M, Aktas C, Tulubas F, et al. The effects of topical treatment with curcumin on burn wound healing in rats. J Mol Histol. 2013;44(1):83–90.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • Benjamin Wachter
    • 1
  • Michael Syrowatka
    • 1
  • Andreas Obwaller
    • 2
  • Julia Walochnik
    • 1
  1. 1.Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
  2. 2.Orphanidis Pharma Research GmbHViennaAustria

Personalised recommendations