Wiener klinische Wochenschrift

, Volume 124, Issue 17–18, pp 618–623 | Cite as

A preliminary study about the effects of warm priming solution on oxidative stress and postoperative atrial fibrillation in open heart surgery

  • Mustafa BuyukatesEmail author
  • Serefden Acikgoz
  • Erol Aktunc
  • Ozer Kandemir
  • Sait Mesut Dogan
  • Mustafa Aydin
original article



An important reason for production of ischemia and reperfusion injury and oxidative stress is the sudden and rapid changes in body temperature during the institution of cardiopulmonary bypass. The aim of this study was to investigate the effects of warm priming solution on oxidative stress and atrial fibrillation.


This is a preliminary prospective study on a group of 40 patients who underwent elective coronary artery bypass grafting operation using cardiopulmonary bypass. Patients were randomized into two groups, each consisting of 20 patients; one group was primed with a solution at 20 °C and the other at 36 °C initially for cardiopulmonary bypass. Blood samples from both of the groups were drawn preoperatively and at the 15th and 60th min of aortic cross clamping and 24th h following the surgery. Serum malondialdehyde levels, protein carbonyl content and total antioxidant status were detected. Patients were followed for postoperative atrial fibrillation.


Malondialdehyde and protein carbonyl content were found to be significantly higher and total antioxidant status was concordantly lower in the cold priming group at the 15th and 60th min, recovering to the normal range postoperatively at the 24th h. Patients in the cold priming group had developed a significantly higher rate of atrial fibrillation when compared with the patients in the warm priming group during the postoperative period.


In conclusion, although this study has its limitation about the sample size it may provide an insight about the probable preventive effects of 36 °C warm priming solution in oxidative stress and postoperative atrial fibrillation.


Cardiopulmonary bypass Priming solution Temperature Oxidative stress Atrial fibrillation 

Eine präliminäre Studie über die Wirkungen von warmen vorbereitenden Lösungen auf den oxidativen Stress und postoperatives Vorhofflimmern in der Chirurgie am offenen Herzen



Ein wichtiger Grund für die Entstehung einer Ischämie, eines Reperfusionsschadens und von oxidativem Stress ist die plötzliche und rasche Änderung der Körpertemperatur während der Einleitung eines kardiopulmonalen Bypasses. Ziel unserer Studie ist es, die Wirkungen von warmen vorbereitenden Lösungen auf oxidativen Stress und Vorhofflimmern zu untersuchen.


Es handelt sich um eine präliminäre, prospektive Studie an 40 Patienten, die einer elektiven Koronararterien-Bypass-Operation mit kardiopulmonalem Bypass unterzogen wurden. Die Patienten wurden in 2 Gruppen von jeweils 20 randomisiert: die eine wurde anfangs mit einer 20 °C Lösung, die andere mit einer 36 °C Lösung für den kardiopulmonalen Bypass vorbereitet. Präoperativ und in der 15. und in der 60. Min nach der Aortenklemmung, sowie 24 h postoperativ wurden von beiden Gruppen Blutproben abgenommen. Die Serumkonzentrationen von Malondialdehyd, sowie der Karbonyl-Protein-Gehalt und der gesamte antioxidative Status wurden bestimmt. Das Auftreten von postoperativem Vorhofflimmern wurde kontrolliert.


Malondialdehyd-Konzentrationen und der Karbonyl-Protein-Gehalt waren in der 15. und 60. Min bei den Patienten mit kalter Vorbereitung signifikant höher. Zugleich war der Gesamt-antioxidative Status signifikant erniedrigt. Diese Veränderungen normalisierten sich bis zur 24 h postoperativ. Bei den Patienten mit der kalten Vorbereitung trat Vorhofflimmern in der postoperativen Phase signifikant häufiger als bei den Patienten mit der körperwarmen Vorbereitung auf.


Obwohl die Studie nur an relativ wenigen Patienten durchgeführt wurde, könnte sie doch einen Hinweis auf mögliche präventive Wirkungen einer 36 °C warmen vorbereitenden Lösung im Bezug auf die Entstehung von oxidativen Stress und postoperativem Vorhofflimmern geben.


Kardiopulmonaler Bypass Vorbereitende Lösungen Temperatur Oxidativer Stress Vorhofflimmern 


Conflict of interest

The authors declare that there is no source of funding for the work.


  1. 1.
    Rodrigo R. Prevention of postoperative atrial fibrillation: novel and safe strategy based on the modulation of the antioxidant system. Front Physiol. 2012;3:93.PubMedCrossRefGoogle Scholar
  2. 2.
    Venardos KM, Perkins A, Headrick J, Kaye DM. Myocardial ischemia-reperfusion injury, antioxidant enzyme systems, and selenium: a review. Curr Med Chem. 2007;14:1539–49.PubMedCrossRefGoogle Scholar
  3. 3.
    Gonenc A, Hacisevki A, Bakkaloglu B, Soyagir A, Torun M, Karagoz H, et al. Oxidative stress is decreased in off-pump versus on-pump coronary artery surgery. J Biochem Mol Biol. 2006;39:377–82.PubMedCrossRefGoogle Scholar
  4. 4.
    Pantke U, Volk T, Schmutzler M, Kox WJ, Sitte N, Grune T. Oxidized proteins as a marker of oxidative stress during coronary heart surgery. Free Radic Biol Med. 1999;27:1080–6.PubMedCrossRefGoogle Scholar
  5. 5.
    Pinzani P, Petruzzi E, Orlando C, Gallai R, Serio M, Pazzagli M. Serum antioxidant capacity in healthy and diabetic subjects as determined by enhanced chemiluminescence. J Biolumin Chemilumin. 1998;13:321–5.PubMedCrossRefGoogle Scholar
  6. 6.
    Elgebaly SA, Houser SL, el Kerm AF, Doyle K, Gillies C, Dalecki K. Evidence of cardiac inflammation after open heart operations. Ann Thorac Surg. 1994;57:391–6.PubMedCrossRefGoogle Scholar
  7. 7.
    Gonenc A, Hacişevki A, Griffiths HR, Torun M, Bakkaloglu B, Simsek B. Free radical reaction products and antioxidant capacity in beating heart coronary artery surgery compared to conventional bypass. Biochemistry (Mosc). 2011;76(6):677–85.CrossRefGoogle Scholar
  8. 8.
    Hunter MI, Nlemadim BC, Davidson DL. Lipid peroxidation products and antioxidant proteins in plasma and cerebrospinal fluid from multiple sclerosis patients. Neurochem Res. 1985;10:1645–52.PubMedCrossRefGoogle Scholar
  9. 9.
    Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, et al. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol. 1990;186:464–78.PubMedCrossRefGoogle Scholar
  10. 10.
    McPherson RA. Specific proteins. In: Henry JB, editor. Clinical diagnosis and mangement by laboratory methods. 20th ed. Philadelphia: WB Saunders Company; 2001. p. 249–63.Google Scholar
  11. 11.
    Juránek I, Bezek S. Controversy of free radical hypothesis: reactive oxygen species—cause or consequence of tissue injury? Gen Physiol Biophys. 2005;24:263–278.PubMedGoogle Scholar
  12. 12.
    Jones WK, Brown M, Ren X, He S, McGuinness M. NF-kappaB as an integrator of diverse signaling pathways: the heart of myocardial signaling? Cardiovasc Toxicol. 2003;3(3):229–54.PubMedCrossRefGoogle Scholar
  13. 13.
    Debreceni B, Debreceni L. Why do homocysteine-lowering B vitamin and antioxidant E vitamin supplementations appear to be ineffective in the prevention of cardiovascular diseases? Cardiovasc Ther. 2011;00:1–7. doi:10.1111/j.1755-5922.2011.00266.x.Google Scholar
  14. 14.
    Kunt AS, Selek S, Celik H, Demir D, Erel O, Andac MH. Decrease of total antioxidant capacity during coronary artey bypass surgery. Mt Sinai J Med. 2006;73:777–83.PubMedGoogle Scholar
  15. 15.
    Maisel WH, Rawn JD, Stevenson WG. Atrial fibrillation after cardiac surgery. Ann Intern Med. 2001;135:1061–73.PubMedGoogle Scholar
  16. 16.
    Elahi M, Hadjinikolaou L, Galinanes M. Incidence and clinical consequences of atrial fibrillation within 1 year of first-time isolated coronary bypass surgery. Circulation 2003;108(Suppl II):II-207–12.Google Scholar
  17. 17.
    Mathew JP, Fontes ML, Tudor IC, Ramsay J, Duke P, Mazer CD, Barash PG, Hsu PH, Mangano DT. A multicenter risk index for atrial fibrillation after cardiac surgery. JAMA. 2004;291:1720–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Zimmer J, Pezzullo J, Choucair W, Southard J, Kokkinos P, Karasik P, Greenberg MD, Singh SN. Meta-analysis of antiarrhythmic therapy in the prevention of postoperative atrial fibrillation and the effect on hospital length of stay, costs, cerebrovascular accidents, and mortality in patients undergoing cardiac surgery. Am J Cardiol. 2003;91:1137–40.PubMedCrossRefGoogle Scholar
  19. 19.
    Gillespie EL, White CM, Kluger J, Sahni J, Gallagher R, Coleman CI. A hospital perspective on the cost-effectiveness of beta-blockade for prophylaxis of atrial fibrillation after cardiothoracic surgery. Clin Ther. 2005;27:1963–9.Google Scholar
  20. 20.
    Gillespie EL, White CM, Kluger J, Rancourt JA, Gallagher R, Coleman CI. Cost-effectiveness of amiodarone for prophylaxis of atrial fibrillation after cardiothoracic surgery. Pharmacotherapy 2006;26:499–504.PubMedCrossRefGoogle Scholar
  21. 21.
    Alqahtani AA. Atrial fibrillation post cardiac surgery trends toward management. Heart Views. 2010;11:57–63.PubMedCrossRefGoogle Scholar
  22. 22.
    Elahi M, Flatman S, Matata BM. Tracing the origins of postoperative atrial fibrillation: the concept of oxidative stress mediated myocardial injury phenomenon. Eur J Cardiovasc Prev Rehabil. 2008;15:735–741.PubMedCrossRefGoogle Scholar
  23. 23.
    Van Wagoner DR. Oxidative stress and inflammation in atrial fibrillation: role in pathogenesis and potential as a therapeutic target. J Cardiovasc Pharmacol. 2008;52:306–13.PubMedCrossRefGoogle Scholar
  24. 24.
    Neuman RB, Bloom HL, Shukrullah I, Darrow LA, Kleinbaum D, Jones DP, Dudley SC Jr. Oxidative stress markers are associated with persistent atrial fibrillation. Clin Chem. 2007;53:1652–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Negi S, Sovari AA, Dudley SC Jr. Atrial fibrillation: the emerging role of inflammation and oxidative stress. Cardiovasc Hematol Disord Drug Targets. 2010;10:262–8.PubMedGoogle Scholar
  26. 26.
    Van Wagoner DR. Molecular basis of atrial fibrillation: a dream or a reality? J Cardiovasc Electrophysiol. 2003;14:667–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Korantzopoulos P, Kolettis TM, Galaris D, Goudevenos JA. The role of oxidative stress in the pathogenesis and perpetuation of atrial fibrillation. Int J Cardiol. 2007;115:135–43.PubMedCrossRefGoogle Scholar
  28. 28.
    Killig F, Stark G. Photodynamic activation of ion transport through lipid membranes and its correlation with an increased dielectric constant of the membrane. Biochim Biophys Acta. 2002;1564:207–13.PubMedCrossRefGoogle Scholar
  29. 29.
    Boos CJ, Anderson RA, Lip GY. Is atrial fibrillation an inflammatory disorder? Eur Heart J. 2006;27:136–149.PubMedCrossRefGoogle Scholar
  30. 30.
    Koniari I, Apostolakis E, Rogkakou C, Baikoussis NG, Dougenis D. Pharmacologic prophylaxis for atrial fibrillation following cardiac surgery: a systematic review. J Cardiothorac Surg. 2010;5:121.PubMedCrossRefGoogle Scholar
  31. 31.
    Davis EM, Packard KA, Hilleman DE. Pharmacologic prophylaxis of postoperative atrial fibrillation in patients undergoing cardiac surgery: beyond beta-blockers. Pharmacotherapy. 2010;30:749.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2012

Authors and Affiliations

  • Mustafa Buyukates
    • 1
    Email author
  • Serefden Acikgoz
    • 2
  • Erol Aktunc
    • 3
  • Ozer Kandemir
    • 1
  • Sait Mesut Dogan
    • 4
  • Mustafa Aydin
    • 4
  1. 1.Department of Cardiovascular Surgery, School of MedicineZonguldak Karaelmas UniversityKozlu-ZonguldakTurkey
  2. 2.Department of Clinical Biochemistry, School of MedicineZonguldak Karaelmas UniversityKozlu-ZonguldakTurkey
  3. 3.Department of Family Medicine, School of MedicineZonguldak Karaelmas UniversityKozlu-ZonguldakTurkey
  4. 4.Department of Cardiology, School of MedicineZonguldak Karaelmas UniversityKozlu-ZonguldakTurkey

Personalised recommendations