Skip to main content

Visual evoked potentials in patients with pineal gland cyst

Visuell evozierte Potentiale bei Patienten mit einer Zyste in der Glandula pinealis



The functional effect of the pineal gland cyst is difficult to evaluate with visual field examination. The aim of this study is to investigate the usefulness of visual evoked potentials (VEP) in patients with pineal gland cyst due to the possible compression on the visual pathway.

Subjects and methods

Black-and-white pattern-reversal checkerboard VEP were recorded in 75 patients (50 females and 25 males, mean age 26.3 ± 15.7 and 25.6 ± 17.6 years, respectively) with pineal gland cyst detected on magnetic resonance of the brain (subject group) and 75 age and sex-matched control subjects (control group). Amplitudes and P100 latencies were collected and later grouped as: (1) normal finding; (2) prechiasmal; (3) prechiasmal and postchiasmal; and (4) postchiasmal dysfunction.


P100 latencies differed significantly between subject (110.26 ± 13.23 ms) and control group (101.01 ± 5.36 ms) (p < 0.01). Findings of the VEP differed significantly (p < 0.01) between subject and control group, mainly due to the postchiasmal dysfunction frequency in subject group. Findings of the VEP differed significantly according to the pineal gland cyst volume (p = 0.006) with more frequent postchiasmal dysfunctions among subjects with larger cysts. Postchiasmal changes were significantly more frequent in patients with described compression of the cyst on surrounding brain structures (p = 0.016).


Postchiasmal dysfunction on VEP can be seen in patients with pineal gland cyst, mostly with larger cysts and with compression of the cyst on surrounding brain structures. VEP serve as a useful method to determine functional impairment of the visual pathway in patients with pineal gland cyst.



Die funktionelle Auswirkung einer Zyste in der Glandula pinealis ist mittels Prüfung der Gesichtsfelder schwierig zu erfassen. Ziel der vorliegenden Studie ist es, die Brauchbarkeit der Messung von visuell evozierten Potentialen (VEP) bei Patienten mit einer Zyste in der Glandula pinealis in Hinblick auf eine mögliche Kompression der Nervenbahn des N opticus zu untersuchen.

Material und Methoden

Schwarz-weiß Muster Reversal Checkerboard VEP wurden bei 75 Patienten (davon 50 weiblich, Mittleres Alter der Frauen 26,3 ± 15,7, beziehungsweise der Männer 25,6 ± 17,6 Jahre) mit einer durch Magnetresonanz des Gehirns entdeckten Zyste im Bereich der Glandula pinealis und bei 75 alters- und geschlechtsmäßig entsprechenden Kontrollpersonen aufgezeichnet. Die erhobenen Amplituden und P100 Latenzzeiten wurden gesammelt und nachträglich in folgende Gruppen geteilt: 1) normal, 2) Prächiasmal, 3) Prä- und postchiasmal, 4) Postchiasmale Funktionsstörung.


Die P100 Latenzzeiten der Patienten (110,26 ± 13,23 ms) unterschieden sich von denen der Kontrollgruppe (101,01 ± 5,36 ms) signifikant (p < 0,01). Der signifikante Unterschied der Ergebnisse der VEP ergab sich hauptsächlich durch die Häufigkeit der postchiasmalen Dysfunktionsergebnisse der Patienten. Patienten mit grösseren Zystenvolumen hatten signifikant häufiger postchiasmale Dysfunktionen als die mit kleineren Zysten (p = 0,006). Postchiasmale Veränderungen waren bei den Patienten mit beschriebener – durch die Zyste bedingte – Kompression der umgebenden Gehirnstrukturen signifikant häufiger (p = 0,016)


Zeichen der postchiasmalen Funktionsstörung in den VEP können bei bei Patienten mit einer Zyste in der Glandula pinealis gesehen werden. Diese Funktionsstörungen sind bei grösseren Zysten und bei beschriebener Kompression der umgebenden Gehirnstrukturen häufiger. Unsere Ergebnisse zeigen, dass die VEP eine nützliche Methode ist, um eine funktionelle Einschränkung der visuellen Bahnen bei Patienten mit einer Zyste in der Glandula pinealis zu erfassen.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Mandera M, Marcol W, Bierzynska-Macyszyn G, Kluczewska E. Pineal cysts in childhood. Childs Nerv Syst. 2003;19:750–55.

    PubMed  Article  Google Scholar 

  2. 2.

    Katzman GL, Dagher AP, Patronas NJ. Incidental findings on brain magnetic resonance imaging from 1000 asymptomatic volunteers. JAMA. 1999;282:36–39.

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Jinkins JR, Xiong L, Reiter RJ. The midline pineal “eye”: MR and CT characteristics of the pineal gland with and without benign cyst formation. J Pineal Res. 1995;19:64–71.

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Petitcolin V, Garcier JM, Mohammedi R, et al. Prevalence and morphology of pineal cysts discovered at pituitary MRI: review of 1844 examinations. J Radiol. 2002;83:141–45.

    PubMed  CAS  Google Scholar 

  5. 5.

    Mamourian AC, Towfighi J. Pineal cysts: MR imaging. Am J Neuroradiol. 1986;7:1081–86.

    PubMed  CAS  Google Scholar 

  6. 6.

    Tamaki N, Shirataki K, Lin TK, Masumura M, Katayama S, Matsumoto S. Cysts of the pineal gland. A new clinical entity to be distinguished from tumors of the pineal region. Childs Nerv Syst. 1989;5:172–76.

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Taraszewska A, Matyja E, Koszewski W, Zaczynski A, Bardadin K, Czernicki Z. Asymptomatic and symptomatic glial cysts of the pineal gland. Folia Neuropathol. 2008;46:186–95.

    PubMed  Google Scholar 

  8. 8.

    Michielsen G, Benoit Y, Baert E, Meire F, Caemaert J. Symptomatic pineal cysts: clinical manifestations and management. Acta Neurochir. (Wien) 2002;144:233–42.

    Article  CAS  Google Scholar 

  9. 9.

    Bosnjak J, Budisic M, Azman D, Strineka M, Crnjakovic M, Demarin V. Pineal gland cysts-an overview. Acta Clin Croat. 2009;48:355–58.

    PubMed  Google Scholar 

  10. 10.

    Fain JS, Tomlinson FH, Scheithauer BW, et al. Symptomatic glial cysts of the pineal gland. J Neurosurg. 1994;80:454–60.

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Mena H, Armonda RA, Ribas JL, Ondra SL, Rushing EJ. Nonneoplastic pineal cysts: a clinicopathologic study of twenty-one cases. Ann Diagn Pathol. 1997;1:11–18.

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Engel U, Gottschalk S, Niehaus L, et al. Cystic lesions of the pineal region-MRI and pathology. Neuroradiology 2000;42:399–402.

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Dickerman RD, Stevens QE, Steide JA, Schneider S J. Precocious puberty associated with a pineal cyst: is it disinhibition of the hypothalamic-pituitary axis? Neuro Endocrinol Lett. 2004;25:173–75.

    PubMed  Google Scholar 

  14. 14.

    Morgan JT, Scumpia AJ, Webster TM, Mittler MA, Edelman M, Schneider SJ. Resting tremor secondary to a pineal cyst: case report and review of the literature. Pediatr Neurosurg. 2008;44:234–38.

    PubMed  Article  Google Scholar 

  15. 15.

    Milroy CM, Smith CL. Sudden death due to a glial cyst of the pineal gland. J Clin Pathol. 1996;49:267–69.

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Chernov MF, Kamikawa S, Yamane S, Ishihara S, Kubo O, Hori T. Neurofiberoscopic biopsy of tumors of the pineal region and posterior third ventricle: indications, technique, complications and results. Neurosurgery 2006;59:267–77.

    PubMed  Article  Google Scholar 

  17. 17.

    Chiappa KH, Hill RA. Pattern-shift visual evoked potentials: interpretation. In: Chiappa KH, editor. Evoked potential in clinical medicine. 3rd ed. Philadelphia: Lippincott-Raven; 1997. pp. 95–131.

    Google Scholar 

  18. 18.

    Blumhardt LD, Barrett G, Halliday AM. The asymmetrical visual evoked potential to pattern reversal in one half field and its significance for the analysis of visual field defects. Br J Ophthalmol. 1977;61:454–61.

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Pietrangeli A, Jandolo B, Occhipinti E, Carapella CM, Morace E. The VEP in evaluation of pituitary tumors. Electromyogr Clin Neurophysiol. 1991;31:163–65.

    PubMed  CAS  Google Scholar 

  20. 20.

    Tobimatsu S, Celesia GG. Studies of human visual pathophysiology with visual evoked potentials. Clin Neurophysiol. 2006;117:1414–33.

    PubMed  Article  Google Scholar 

  21. 21.

    Halliday AM. The visual evoked potentials in the investigation of diseases of the optic nerve. In: Halliday AM, editor. Evoked potentials in clinical testing. London: Churchill Livingstone; 1982. pp. 227–28.

    Google Scholar 

  22. 22.

    Mikula I, Miskov S, Negovetic R, Demarin V. Visual evoked potentials (VEP) in Whiplash injuries. Acta Clin Croat. 2000. p. 39.

  23. 23.

    Miskov S. Neurophysiological methods in headache diagnosis. Acta Med Croatica. 2008;62:189–96.

    PubMed  Google Scholar 

  24. 24.

    Unay B, Ulas UH, Karaoglu B, Eroglu E, Akin R, Gokcay E. Visual and brainstem auditory evoked potentials in children with headache. Pediatr Int. 2008;50:620–23.

    PubMed  Article  Google Scholar 

  25. 25.

    Odom JV, Bach M, Brigell M, et al. ISCEV standard for clinical visual evoked potentials (2009 update). Doc Ophthalmol. 2010;120:111–19.

    PubMed  Article  Google Scholar 

  26. 26.

    Brecelj J. From immature to mature pattern ERG and VEP. Doc Ophthalmol. 2003;107:215–24.

    Google Scholar 

  27. 27.

    Graybiel AM. Organization of the nigrotectal connection: an experimental tracer study in the cat. Brain Res. 1978;143:339–48.

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Beckstead RM, Morse JR, Norgren R. The nucleus of the solitary tract in the monkey: projections to the thalamus and brain stem nuclei. J Comp Neurol. 1980;190:259–82.

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Leichnetz GR, Spencer RF, Hardy SG, Astruc J. The prefrontal corticotectal projection in the monkey: an anterograde and retrograde horseradish peroxidase study. Neuroscience 1981;6:1023–41.

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Distel H, Fries W. Contralateral cortical projections to the superior colliculus in the macaque monkey. Exp Brain Res. 1982;48:157–62.

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Harting JK, Huerta MF, Hashikawa T, Van Lieshout DP. Projection of the mammalian superior colliculus upon the dorsal lateral geniculate nucleus: organization oftectogeniculate pathways in nineteen species. J Comp Neurol. 1991;304:275–306.

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Harting JK, Updyke BV, Van Lieshout DP. The visual-oculomotor striatum of the cat: functional relationship to the superior colliculus. Exp Brain Res. 2001;136:138–42.

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Reyns N, Hayashi M, Chinot O, et al. The role of gamma knife radiosurgery in the treatment of pineal parenchymal tumours. Acta Neurochir. (Wien) 2006;148:5–11.

    Article  CAS  Google Scholar 

  34. 34.

    Tamaki N, Yin D. Therapeutic strategies and surgical results for pineal region tumours. J Clin Neurosci. 2000;7:125–8.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Jelena Bosnjak MD, PhD.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bosnjak, J., Mikula, I., Miskov, S. et al. Visual evoked potentials in patients with pineal gland cyst. Wien Klin Wochenschr 124, 605–610 (2012).

Download citation


  • Pineal gland cyst
  • Visual evoked potentials
  • Pineal region
  • Pineal gland


  • Glandula pinealis Zyste
  • Visuell evozierte Potenziale
  • Glandula pinealis Bereich
  • Glandula pinealis