Wiener klinische Wochenschrift

, Volume 123, Issue 11–12, pp 369–377 | Cite as

Interventionseffekte einer Aktivitätserhöhung von 3000 Schritten mehr am Tag

Originalarbeit

Zusammenfassung

Ziel der vorliegenden Studie ist es, Effekte der nationalen Bewegungskampagne "3000 Schritte mehr am Tag" auf ausgewählte gesundheitliche Parameter hin zu untersuchen. Im Rahmen der niederschwelligen Intervention wird das ursprüngliche Aktivitätsniveau der Probanden um täglich 3000 Schritte gesteigert. Nach erfolgter Bestandsaufnahme der ursprünglichen Gehaktivität werden die Probanden (n = 153, ø-Alter: 43,0 ± 8,3 Jahre) angewiesen ihre Basisaktivität für 15 Wochen zu erhöhen. Die Vor- und Nachuntersuchung beinhalteten: Bestimmung von 1) Körpergewicht und Body Mass Index, 2) walkingspezifischer Ausdauerleistungsfähigkeit sowie 3) subjektiver Lebensqualität. In der Testwoche erreicht das Gesamtkollektiv eine durchschnittliche Gehaktivität von 6648 ± 2305 Schritten pro Tag, die sich während der Intervention auf 9886 ± 2356 Schritte pro Tag erhöht. 52,9 % der Stichprobe erreichen das Interventionsziel über den Gesamtzeitraum hinweg. Das Körpergewicht, der Body Mass Index, Aspekte der subjektiven Lebensqualität und die walkingspezifische Ausdauerleistungsfähigkeit verbessern sich hoch signifikant (p < 0,001). Mit Hilfe von Pedometerinterventionen werden gesundheitswirksame Verbesserungen erzielt und stellen vor allem für bisher inaktive Personen eine sinnvolle Möglichkeit zur Erhöhung der Alltagsaktivität dar.

Schlüsselwörter

Alltagsaktivität Fitness Lebensqualität Niederschwellige Gehintervention Pedometer 

Intervention effects of 3000 steps more per day

Summary

The aim of this intervention study was to evaluate the health effect of the German physical activity campaign "3000 steps more per day". Physical activity should be enhanced by means of adding 3000 steps per day to baseline level. After identifying the step counts at baseline, all participants (n = 153, 43.0 ± 8.3 years) were urged to accumulate additional 3000 steps per day to their baseline activity over a period of 15 weeks. Pre- and post-tests included measurements of (1) body weight and body mass index, (2) aerobic fitness as well as (3) subjective quality of life. At baseline the mean activity level reached 6646 ± 2305 steps per day and increased during intervention to 9886 ± 2536 steps per day. 52.9% of the participants achieved the intervention goal throughout the intervention. The body weight and body mass index reduced significantly. Aerobic fitness and subjective quality of life significantly improved. By means of the present intervention considerable health effects are achieved. Pedometer interventions are a reasonable possibility for lifestyle changes, especially for physical inactive people.

Keywords

All-day physical activity Fitness Low-threshold walking intervention Pedometer Quality of life 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. Hollmann W, Strüder HK, editors. Sportmedizin. Grundlagen für die körperliche Aktivität, Training und Präventivmedizin. 5. ed. Stuttgart: Schattauer Verlag; 2010Google Scholar
  2. Hultquist CN, Albright C, Thompson DL. Comparison of walking recommendations in previously inactive women. Med Sci Sports Exerc 2005;37(4):676–83CrossRefPubMedGoogle Scholar
  3. Richardson CR, Newton TL, Abraham JJ, Sen A, Jimbo M, Swartz AM. A meta-analysis of pedometer-based walking interventions and weight loss. Ann Fam Med 2008;6(1):69–77CrossRefPubMedPubMedCentralGoogle Scholar
  4. Williams DM, Matthews CE, Rutt C, Napolitano MA, Marcus BH. Interventions to increase walking behavior. Med Sci Sports Exerc 2008;40(7 Suppl.):S567–73CrossRefPubMedPubMedCentralGoogle Scholar
  5. Hatano Y. Use of the pedometer for promoting daily walking exercise. ICHPER 1993;29:4–8Google Scholar
  6. Marshall SJ, Levy SS, Tudor-Locke CE. Translating physical activity recommendations into a pedometer-based step goal: 3000 steps in 30 minutes. Am J Prev Med 2009;36(5):410–5CrossRefPubMedGoogle Scholar
  7. Tudor-Locke C, Hatano Y, Pangrazi RP, Kang M. Revisiting "how many steps are enough?". Med Sci Sports Exerc 2008;40(7 Suppl.):S537–43CrossRefPubMedGoogle Scholar
  8. Haskell WL, Lee IM, Pate RR, Powell KE, Blair SN, Franklin BA, et al. Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Med Sci Sports Exerc 2007;39(8):1423–34CrossRefPubMedGoogle Scholar
  9. Mensink, GBM. Bundes-Gesundheitssurvey: Körperliche Aktivität. Aktive Freizeitgestaltung in Deutschland. Beiträge zur Gesundheitsberichterstattung des Bundes. Berlin: Robert Koch Institut; 2003Google Scholar
  10. Rütten A, Abu-Omar K. Public Health: Aktivierung von Bevölkerungsgruppen zu gesundheitsförderlicher körperlicher Aktivität. In: Bös K, Brehm W, editors. Handbuch Gesundheitssport, 2nd ed. Schorndorff: Hofmann-Verlag; 2006. pp. 181–94 (Beiträge zur Lehre und Forschung im Sport; Vol. 120)Google Scholar
  11. Choi BC, Pak AW, Choi JC, Choi EC. Daily step goal of 10,000 steps: a literature review. Clin Invest Med 2007;30(3):E146–51PubMedGoogle Scholar
  12. Schneider PL, Bassett DR Jr, Thompson DL, Pronk NP, Bielak KM. Effects of a 10,000 steps per day goal in overweight adults. Am J Health Promot 2006;21(2):85–9CrossRefPubMedGoogle Scholar
  13. Wilde BE, Sidman CL, Corbin CB. A 10,000-step count as a physical activity target for sedentary women. Res Q Exerc Sport 2001;72(4):411–4CrossRefPubMedGoogle Scholar
  14. Hasson RE, Haller J, Pober DM, Staudenmayer J, Freedson PS. Validity of the Omron HJ-112 pedometer during treadmill walking. Med Sci Sports Exerc 2009;41(4):805–9CrossRefPubMedGoogle Scholar
  15. Holbrook EA, Barreira TV, Kang M. Validity and reliability of Omron pedometers for prescribed and self-paced walking. Med Sci Sports Exerc 2009;41(3):670–4CrossRefPubMedGoogle Scholar
  16. Oja P. Tester's guide UKK Walk test. Urho Kaleva Kekkonen Institute for Health Promotion Research: Tampere; 2001Google Scholar
  17. Hanssen-Doose A. Lebensqualität und Sport & Bewegung bei chronisch erkrankten Menschen. Entwicklung und Validierung eines Testinstruments. Dissertation.de. Verlag im Internet; 2010.Google Scholar
  18. Basset DR, Strath SJ. Use of pedometers to assess physical activity. In: Welk GJ, editor. Physical activity assessments for health-related research. Champaign III: Human Kinetics; 2002Google Scholar
  19. Tudor-Locke C, Bassett DR Jr. How many steps/day are enough? Preliminary pedometer indices for public health. Sports Med 2004;34(1):1–8CrossRefPubMedGoogle Scholar
  20. Physical Activity Guidelines Advisory Committee. Physical Activity Guidelines Advisory Committee Report, 2008. Washington, DC, U.S.A.: Department of Health and Human Services; 2008Google Scholar
  21. Metzger JS, Catellier DJ, Evenson KR, Treuth MS, Rosamond WD, Siega-Riz AM. Patterns of objectively measured physical activity in the United States. Med Sci Sports Exerc 2008;40(4):630–8CrossRefPubMedGoogle Scholar
  22. Le Masurier GC, Sidman CL, Corbin CB. Accumulating 10,000 steps: does this meet current physical activity guidelines? Res Q Exerc Sport 2003;74(4):389–94CrossRefPubMedGoogle Scholar
  23. Iwane M, Arita M, Tomimoto S, Satani O, Matsumoto M, Miyashita K, et al. Walking 10,000 steps/day or more reduces blood pressure and sympathetic nerve activity in mild essential hypertension. Hypertens Res 2000;23(6):573–80CrossRefPubMedGoogle Scholar
  24. Welk GJ, Differding JA, Thompson RW, Blair SN, Dziura J, Hart P. The utility of the Digi-walker step counter to assess daily physical activity patterns. Med Sci Sports Exerc 2000;32 (9 Suppl.):481–8CrossRefGoogle Scholar
  25. Robert Koch Institut. GEDA – Gesundheit in Deutschland aktuell – Beiträge zur Gesundheitsberichterstattung des Bundes – Daten und Fakten: Ergebnisse der Studie »Gesundheit in Deutschland aktuell 2009«. Vorabdruck September 2010, BerlinGoogle Scholar
  26. Rütten A, Abu-Omar K. Prevalence of physical activity in the European Union. Soz Praventivmed 2004;49(4):281–9CrossRefPubMedGoogle Scholar
  27. Sjöström M, Oja P, Hagströmer M, Smith BJ, Baumann A. Health enhancing physical activity across European Union countries: the Eurobarometer study. J Public Health 2006;1:291–300CrossRefGoogle Scholar
  28. Bravata DM, Smith-Spangler C, Sundaram V, Gienger AL, Lin N, Lewis R, et al. Using pedometers to increase physical activity and improve health: a systematic review. JAMA 2007;298(19):2296–304CrossRefPubMedGoogle Scholar
  29. Choi BC, Pak AW, Choi JC, Choi EC. Achieving the daily step goal of 10,000 steps: the experience of a Canadian family attached to pedometers. Clin Invest Med 2007;30(3):E108–13PubMedGoogle Scholar
  30. Engel L, Lindner H. Impact of using a pedometer on time spent walking in older adults with type 2 diabetes. Diabetes Educ 2006;32(1):98–107CrossRefPubMedGoogle Scholar
  31. Chan CB, Ryan DA, Tudor-Locke C. Health benefits of a pedometer-based physical activity intervention in sedentary workers. Prev Med 2004;39(6):1215–22CrossRefPubMedGoogle Scholar
  32. Miyatake N, Nishikawa H, Morishita A, Kunitomi M, Wada J, Suzuki H, et al. Daily walking reduces visceral adipose tissue areas and improves insulin resistance in Japanese obese subjects. Diabetes Res Clin Pract 2002;58(2):101–7CrossRefPubMedGoogle Scholar
  33. Asikainen TM, Suni JH, Pasanen ME, Oja P, Rinne MB, Miilunpalo SI, et al. Effect of brisk walking in 1 or 2 daily bouts and moderate resistance training on lower-extremity muscle strength, balance, and walking performance in women who recently went through menopause: a randomized, controlled trial. Phys Ther 2006;86(7):912–23PubMedGoogle Scholar
  34. Church TS, Earnest CP, Skinner JS, Blair SN. Effects of different doses of physical activity on cardiorespiratory fitness among sedentary, overweight or obese postmenopausal women with elevated blood pressure: a randomized controlled trial. JAMA 2007;297(19):2081–91CrossRefPubMedGoogle Scholar
  35. Kukkonen-Harjula K, Laukkanen R, Vuori I, Oja P, Pasanen M, Nenonen A et al. Effects of walking training on health-related fitness in healthy middle-aged adults – a randomized controlled study. Scand J Med Sci Sports 1998;8(4):236–42CrossRefPubMedGoogle Scholar
  36. Murphy M, Nevill A, Neville C, Biddle S, Hardman A. Accumulating brisk walking for fitness, cardiovascular risk, and psychological health. Med Sci Sports Exerc 2002;34(9):1468–74CrossRefPubMedGoogle Scholar
  37. Okamoto N, Nakatani T, Morita N, Saeki K, Kurumatani N. Home-based walking improves cardiopulmonary function and health-related QOL in community-dwelling adults. Int J Sports Med 2007;28(12):1040–5CrossRefPubMedGoogle Scholar
  38. Morimoto T, Oguma Y, Yamazaki S, Sokejima S, Nakayama T, Fukuhara S. Gender differences in effects of physical activity on quality of life and resource utilization. Qual Life Res 2006;15(3):537–46CrossRefPubMedGoogle Scholar
  39. Fisher KJ, Li F. A community-based walking trial to improve neighborhood quality of life in older adults: a multilevel analysis. Ann Behav Med 2004;28(3):186–94CrossRefPubMedGoogle Scholar
  40. Lustyk MK, Widman L, Paschane AA, Olson KC. Physical activity and quality of life: assessing the influence of activity frequency, intensity, volume, and motives. Behav Med 2004;30(3):124–31CrossRefPubMedGoogle Scholar
  41. Brassington G, King A. Theoretical considerations for physical activity promotion. In: Oja P, Borms J, editors. Health enhancing physical activity. Oxford: Meyer & Meyer; 2004Google Scholar
  42. Hagstromer M, Oja P, Sjostrom M. Physical activity and inactivity in an adult population assessed by accelerometry. Med Sci Sports Exerc 2007;39(9):1502–8CrossRefPubMedGoogle Scholar
  43. Orsini N, Bellocco R, Bottai M, Hagstromer M, Sjostrom M, Pagano M, et al. Profile of physical activity behaviors among Swedish women aged 56–75 years. Scand J Med Sci Sports 2008;18(1):95–101CrossRefPubMedGoogle Scholar
  44. Troiano RP, Berrigan D, Dodd KW, Masse LC, Tilert T, McDowell M. Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc 2008;40(1):181–8CrossRefPubMedGoogle Scholar
  45. Baker G, Gray SR, Wright A, Fitzsimons C, Nimmo M, Lowry R, et al. The effect of a pedometer-based community walking intervention "Walking for Wellbeing in the West" on physical activity levels and health outcomes: a 12-week randomized controlled trial. Int J Behav Nutr Phys Act 2008;5(1):44CrossRefPubMedPubMedCentralGoogle Scholar
  46. Blue CL, Black DR. Synthesis of intervention research to modify physical activity and dietary behaviors. Res Theory Nurs Pract 2005;19(1):25–61CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Zentrum für GesundheitDeutsche Sporthochschule KölnKölnGermany
  2. 2.Institut für Bewegung und bewegungsorientierte Prävention und RehabilitationDeutsche Sporthochschule KölnKölnGermany

Personalised recommendations