Skip to main content
Log in

Evaluation of pulmonary vein variations and anomalies with 64 slice multi detector computed tomography

Auswertung von Pulmonalvenen Variationen und Anomalien mittels 64 Zeilen Multi Detektor Computertomographie

  • Original article
  • Published:
Wiener klinische Wochenschrift Aims and scope Submit manuscript

Zusammenfassung

Die Lungenvenen sind eine der bedeutendsten Strukturen des Kreislaufs. Im letzten Jahrzehnt wurde erkannt, dass die Lungenvenen eine bedeutende Rolle beim Vorhofflimmern als auslösender Fokus der elektrischen Aktivität spielen. Die primäre Behandlungsmethode des Vorhofflimmerns ist die Ablation des Fokus in den Lungenvenen. Für den besten Erfolg dieser Maßnahme sollte die Anatomie der Lungenvenen vorher gut bekannt sein. MATERIAL UND METHODEN: In unserer Abteilung für Radiologie wurde zwischen Jänner 2008 und Mai 2010 bei 783 Patienten eine computertomographische Angiographie durchgeführt. Die Patienten waren zur Coronar-CT wegen einer bekannten oder suspizierten koronaren Herzerkrankung, bzw. zur CT Angio wegen des Verdachtes auf Pulmonalembolie zugewiesen worden. Alle Untersuchungen wurden auf einem Phillips Brilliance 64 Zeiler Multidetektor CT Gerät durchgeführt. 402 der Patienten waren männlich, 381 weiblich. Das mittlere Alter der Patienten lag bei 48 (14–89) Jahren. Die CT Ergebnisse zur Identifikation der Anatomie der Lungenvenen (inklusive ihrer Varianten und Anomalien) wurden retrospektiv erhoben. ERGEBNISSE: Bei dem Großteil der Fälle mündeten zwei Lungenvenen in den linken Vorhof auf jeder Seite. 18 Variationen wurden rechts und 8 Variationen links entdeckt. Die häufigste kombinierte Variante waren 2 rechts und 4 links (32,3 %) einmündende Lungenvenen. Vier links einmündende Lungenvenen war der häufigste Einfach-Variations Typ (76 %). Zusätzlich wurden ein Situs inversus totalis (0,12 %), 2 partiell anormale pulmonal venöse Rückströme (0,25 %) und ein Szimitar Syndrom (0,12 %) gefunden. SCHLUSSFOLGERUNGEN: Diese Studie zeigt, dass viele Variationen der Lungenvenen mit zunehmender Patientenzahl beobachtet werden. Um eine erfolgreiche und komplikationslose Ablation bzw. Operation zu gewährleisten, sollte die Anatomie der Lungenvenen vor der Prozedur bekannt sein. Die Multidetektor CT ist eine verlässliche bildgebende Methode für die Erfassung der Querschnitts und 3-dimensionalen Anatomie.

Summary

Pulmonary Veins are one of the major structures of circulation. In the last decade, pulmonary veins have been known to play an important role as the triggering focus of the electrical activity in atrial fibrillation. Primary treatment method of AF is RF ablation of the focus. For the best ablation, the anatomy of PVs should be well established before the procedure. MATERIAL AND METHODS: In our radiology department, 783 patients underwent computed tomography angiography between January 2008 and May 2010. Patients were referred for coronary CTA because of known or suspected coronary artery disease or computed tomography pulmonary angiography (CTPA) because of known or suspect pulmonary embolism. All scanning was performed on Philips Brilliance 64 slice Multidetector CT. The group consisted of 402 male and 381 female patients with the average age of 48 (range 14–89). CT data of patients were retrospectively reviewed to identify the PV anatomy and to determine anatomic variants and anomalies. RESULTS: In the majority of cases, two pulmonary veins drain into the left atrium on each side. Eighteen and eight variations were found in the right and left sides, respectively. Most frequent combined variations were 2R-4L (32.3%) and 4L was the more frequent single variation type (76%). In addition to that one Situs inversus totalis (0.12%), two partial anomalous pulmonary venous returns (0.25%) and one scimitar syndrome (0.12%) were found. CONCLUSION: This study showed that multiple types of variations of PVs can be found with increasing patient number. Therefore, for the successful ablation and surgery without any complications, the anatomy of PVs should be known before the procedure. MDCT is a reliable imaging method for the detailed cross-sectional and 3D anatomy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Marom EM, Herndon JE, Kim YH, McAdams HP. Variations in pulmonary venous drainage to the left atrium: implications for radiofrequency ablation Radiology 2004;230(3):824–9

    Article  PubMed  Google Scholar 

  • Jongbloed MR, Dirksen MS, Bax JJ, et al. Atrial fibrillation: multi-detector row CT of pulmonary vein anatomy prior to radiofrequency catheter ablation--initial experience. 2005;234(3):702–9

  • Degener S, Shin DI, Pattberg SV, Stamm I, Tonnellier B, Horlitz M. Ablation of atrial fibrillation using CT image integration. Wien Med Wochenschr 2008;158(5–6):148–5

    Article  PubMed  Google Scholar 

  • Douglas YL, Jongbloed MR, Deruiter MC, Gittenberger-de Groot AC. Normal and abnormal development of pulmonary veins: State of the art and correlation with clinical entities. Int J Cardiol 2010. [Epub ahead of print]

  • Vonken EP, Velthuis BK, Wittkampf FH, Rensing BJ, Derksen R, Cramer MJ. Contrast-enhanced MRA and 3D visualization of pulmonary venous anatomy to assist radiofrequency catheter ablation. J Cardiovasc Magn Reson 2003;5(4):545–51

    Article  PubMed  CAS  Google Scholar 

  • Toffanin G, Scarabeo V, Verlato R, De Conti F, Zampiero AA, Piovesana P. Transoesophageal echocardiographic evaluation of pulmonary vein anatomy in patients undergoing ostial radiofrequency catheter ablation for atrial fibrillation: a comparison with magnetic resonance angiography. J Cardiovasc Med (Hagerstown) 2006;7(10):748–52

    Article  Google Scholar 

  • Takase B, Nagata M, Matsui T, et al. Pulmonary vein dimensions and variation of branching pattern in patients with paroxysmal atrial fibrillation using magnetic resonance angiography. Jpn Heart J 2004;45(1):81–92

    Article  PubMed  Google Scholar 

  • Chard M, Tabrizchi R. The role of pulmonary veins in atrial fibrillation: a complex yet simple story. Pharmacol Ther 2009;124(2):207–18

    Article  PubMed  CAS  Google Scholar 

  • Jongbloed MR, Bax JJ, Zeppenfeld K, van der Wall EE, Schalij MJ. Anatomical observations of the pulmonary veins with intracardiac echocardiography and hemodynamic consequences of narrowing of pulmonary vein ostial diameters after radiofrequency catheter ablation of atrial fibrillation. Am J Cardiol 2004;15;93(10):1298–302

    Article  PubMed  Google Scholar 

  • Ito H, Dajani KA. Evaluation of the Pulmonary Veins and Left Atrial Volume using Multidetector Computed Tomography in Patients Undergoing Catheter Ablation for Atrial Fibrillation. Curr Cardiol Rev 2009;5(1):17–21

    Article  PubMed  Google Scholar 

  • Woźniak-Skowerska I, Skowerski M, Wnuk-Wojnar A, et al. Int J Comparison of pulmonary veins anatomy in patients with and without atrial fibrillation: Analysis by multislice tomography. Cardiol. (In press)

  • Scharf C, Sneider M, Case I, et al. Anatomy of the pulmonary veins in patients with atrial fibrillation and effects of segmental ostial ablation analyzed by computed tomography. J Cardiovasc Electrophysiol 2003;14(2):150–5

    Article  PubMed  Google Scholar 

  • Kato R, Lickfett L, Meininger G, et al. Pulmonary vein anatomy in patients undergoing catheter ablation of atrial fibrillation: lessons learned by use of magnetic resonance imaging. Circulation 2003;22;107(15):2004–10

    Article  PubMed  Google Scholar 

  • Dillman JR, Yarram SG, Hernandez RJ. Imaging of pulmonary venous developmental anomalies. AJR Am J Roentgenol 2009;192(5):1272–85

    Article  PubMed  Google Scholar 

  • Maldonado JA, Henry T, Gutiérrez FR. Congenital thoracic vascular anomalies. Radiol Clin North Am 2010;48(1):85–115

    Article  PubMed  Google Scholar 

  • Baskar Karthekeyan R, Saldanha R, Sahadevan MR, Rao SK, Vakamudi M, Rajagopal BK. Scimitar syndrome: experience with 6 patients. Asian Cardiovasc Thorac Ann 2009;17(3):266–71

    PubMed  Google Scholar 

  • Gudjonsson U, Brown JW. Scimitar syndrome. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 2006:56–62

  • Subotich D, Mandarich D, Milisavljevich M, Filipovich B, Nikolich V. Variations of pulmonary vessels: some practical implications for lung resections. Clin Anat 2009;22(6):698–705

    Article  PubMed  Google Scholar 

  • Sugimoto S, Izumiyama O, Yamashita A, Baba M, Hasegawa T. Anatomy of inferior pulmonary vein should be clarified in lower lobectomy. Ann Thorac Surg 1998;66(5):1799–800

    Article  PubMed  CAS  Google Scholar 

  • Yamashita H. Variations in the pulmonary segments and the bronchovascular trees. In: Yamashita H, ed. Roentgenologic anatomy of the lung. Igaku-shoin, Tokyo 1978;70–107

    Google Scholar 

  • Minamoto K, Misao T, Takashima S, Nakano H. Successful thoracoscopic lobectomy for lung cancer in a patient with anatomic variation of the left inferior pulmonary vein. Acta Med Okayama 2007;61(2):103–6

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guven Tekbas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tekbas, G., Gumus, H., Onder, H. et al. Evaluation of pulmonary vein variations and anomalies with 64 slice multi detector computed tomography. Wien Klin Wochenschr 124, 3–10 (2012). https://doi.org/10.1007/s00508-011-0086-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00508-011-0086-9

Keywords

Navigation