Wiener klinische Wochenschrift

, Volume 119, Supplement 3, pp 33–39 | Cite as

Porcine isosporosis: Infection dynamics, pathophysiology and immunology of experimental infections

  • Hanna L. Worliczek
  • Marc Buggelsheim
  • Armin Saalmüller
  • Anja Joachim
Review Article

Summary

Isospora suis, an intestinal protozoan parasite of swine, is the causative agent of neonatal coccidiosis, a disease with high morbidity in affected pig-breeding units and consequently of high economic importance. Infection leads to damage of the mucosal surface in the jejunum and ileum and to non-haemorrhagic diarrhoea. As a result, weight gain of piglets is reduced and secondary infections with other enteric pathogens may lead to increased mortality. Despite its economic and veterinary importance, host-parasite interactions are still poorly understood. To examine these interactions experimental infection models are established using outbred piglets infected with defined numbers of parasites on different days of life. This review discusses the life cycle of Isospora suis and the clinical and parasitological characteristics of porcine neonatal coccidiosis including pathology, and compare the different experimental infection models and the tools for studying Isospora suis in vitro. Moreover, it summarises findings about natural age resistance of pigs against infections with Isospora suis, our current knowledge about immune response to other coccidial infections, e.g. with Eimeria spp. in different hosts, and gives a short overview on peculiarities of the porcine immune system and its development in young animals which may play a role in porcine coccidiosis.

Key words

Coccidiosis Isospora suis Eimeria Immunology Pig 

Ferkelisosporose: Infektionsdynamik, Pathophysiologie und Immunologie experimenteller Infektionen

Zusammenfassung

Isospora suis ist ein einzelliger Parasit des Schweins und der Erreger der Saugferkelkokzidiose. Diese Erkrankung zeigt eine hohe Morbidität in betroffenen Ferkelzuchtbetrieben und ist damit ein wichtiger wirtschaftlicher Faktor in der Schweineproduktion. Im Verlauf der Infektion wird die Schleimhaut des Dünndarmepithels in Jejunum und Ileum stark geschädigt, was zu charakteristischen unblutigen Durchfällen führt. Eine Folge der reduzierten Nährstoffaufnahme im so geschädigten Dünndarm sind verminderte Absetzgewichte und ein starkes Auseinanderwachsen der Würfe, zusätzlich können Sekundärinfektionen mit anderen Darmpathogenen die Mortalitätsrate erhöhen. Trotz der wirtschaftlichen und veterinärmedizinischen Bedeutung der Saugferkelkokzidiose sind die Interaktionen zwischen Wirt und Parasit bislang nur unzureichend aufgeklärt. Dieser Übersichtsartikel befasst sich mit dem Lebenszyklus von I. suis und den klinischen und parasitologischen Charakteristika der Saugferkelkokzidiose. Weiters werden verschiedene Modelle der experimentellen Infektion und etablierte in vitro-Methoden zur Erforschung von I. suis vorgestellt. Er gibt einen Überblick über die natürliche Altersresistenz gegen Infektionen mit I. suis, die Immunantwort verschiedener Wirte bei anderen Kokzidieninfektionen (Eimeria spp., Cryptosporidium muris) und eine Zusammenfassung der Besonderheiten des Immunsystems des Schweins und seiner Entwicklung in den ersten Lebenswochen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Biester HE, Murray C (1934) Studies in infectious enteritis of swine. VIII. Isospora suis n. sp. in swine. J Am Vet Med Assoc 85: 207–219Google Scholar
  2. Sangster LT, Stuart BP, Williams DJ, Bedell DM (1978) Coccidiosis associated with scours in baby pigs. Vet Med Small Anim Clin 73: 1317–1319PubMedGoogle Scholar
  3. Stuart BP, Lindsay DS, Ernst JV, Acres SD (1979) Coccidiosis as a cause of scours in baby pigs. In: 2nd International Symposium on neonatal diarrhea in calves and pigs, 3–5 October, 1978, Saskatoon, Saskatchewan, Canada, pp 371–382Google Scholar
  4. Lindsay DS, Stuart BP, Wheat BE, Ernst JV (1980) Endogenous development of the swine coccidium, Isospora suis Biester 1934. J Parasitol 66: 771–779PubMedCrossRefGoogle Scholar
  5. Matuschka FR, Heydorn AO (1980) Die Entwicklung von Isospora suis Biester und Murray 1934 (Sporozoa : Coccidia : Eimeriidae) im Schwein. In: Herter K (ed) Zoologische Beiträge, vol 26. Duncker & Humblot, Berlin, pp405–476Google Scholar
  6. Lindsay DS, Current WL, Ernst JV (1982) Sporogony of Isospora suis Biester, 1934 of swine. J Parasitol 68: 861–865PubMedCrossRefGoogle Scholar
  7. Vitovec J, Koudela B (1990) Double alteration of the small intestine in conventional and gnotobiotic piglets experimentally infected with the coccidium Isospora suis (Apicomplexa, Eimeriidae). Folia Parasitol (Praha) 37: 21–33Google Scholar
  8. Mundt HC, Cohnen A, Daugschies A, Joachim A, Prosl H, Schmaschke R, et al (2005) Occurrence of Isospora suis in Germany, Switzerland and Austria. J Vet Med B Infect Dis Vet Public Health 52: 93–97PubMedGoogle Scholar
  9. Mundt HC, Daugschies A, Joachim A (2007) Increased awareness of piglet coccidiosis. Pig Progress 1: 22–25Google Scholar
  10. Mundt HC, Joachim A, Becka M, Daugschies A (2006) Isospora suis: an experimental model for mammalian intestinal coccidiosis. Parasitol Res 98: 167–175PubMedCrossRefGoogle Scholar
  11. Lindsay DS, Current WL, Taylor JR (1985) Effects of experimentally induced Isospora suis infection on morbidity, mortality, and weight gains in nursing pigs. Am J Vet Res 46: 1511–1512PubMedGoogle Scholar
  12. Lindsay DS, Blagburn BL, Powe TA (1992) Enteric coccidial infections and coccidiosis in swine. Comp Cont Ed Pract Vet 14: 698–702Google Scholar
  13. Joachim A, Ruttkowski B, Zimmermann M, Daugschies A, Mundt HC (2004) Detection of Isospora suis (Biester and Murray 1934) in piglet faeces – comparison of microscopy and PCR. J Vet Med B Infect Dis Vet Public Health 51: 140–142PubMedGoogle Scholar
  14. Mundt HC, Mundt-Wustenberg S, Daugschies A, Joachim A (2007) Efficacy of various anticoccidials against experimental porcine neonatal isosporosis. Parasitol Res 100: 401–411PubMedCrossRefGoogle Scholar
  15. Koudela B, Vodstrcilova M, Klimes B, Vladik P, Vitovec J (1991) Use of the anticoccidial agent, tortrazuril (Baycox, Bayer) in coccidiosis in suckling pigs. Vet Med (Praha) 36: 657–663Google Scholar
  16. Stuart BP, Gosser HS, Allen CB, Bedell DM (1982) Coccidiosis in swine: dose and age response to Isospora suis. Can J Comp Med 46: 317–320PubMedGoogle Scholar
  17. Harleman JH, Meyer RC (1985) Pathogenicity of Isospora suis in gnotobiotic and conventionalised piglets. Vet Rec 116: 561–565PubMedGoogle Scholar
  18. Mundt HC, Joachim A, Daugschies A, Zimmermann M (2003) Population biology studies on Isospora suis in piglets. Parasitol Res 90 [Suppl 3]: 158–159CrossRefGoogle Scholar
  19. Vitovec J, Koudela B (1987) Pathology of natural isosporosis in nursing piglets. Folia Parasitol (Praha) 34: 199–204Google Scholar
  20. Niestrath M, Takla M, Joachim A, Daugschies A (2002) The role of Isospora suis as a pathogen in conventional piglet production in Germany. J Vet Med B Infect Dis Vet Public Health 49: 176–180PubMedGoogle Scholar
  21. Stuart BP, Lindsay DS, Ernst JV, Gosser HS (1980) Isospora suis enteritis in piglets. Vet Pathol 17: 84–93PubMedGoogle Scholar
  22. Harleman JH, Meyer RC (1984) Life cycle of Isospora suis in gnotobiotic and conventionalized piglets. Vet Parasitol 17: 27–39PubMedCrossRefGoogle Scholar
  23. Baba E, Gaafar SM (1985) Interfering effect of Isospora suis infection on Salmonella typhimurium infection in swine. Vet Parasitol 17: 271–278PubMedCrossRefGoogle Scholar
  24. Martineau GP, del Castillo J (2000) Epidemiological, clinical and control investigations on field porcine coccidiosis: clinical, epidemiological and parasitological paradigms? Parasitol Res 86: 834–837PubMedCrossRefGoogle Scholar
  25. Maes D, Vyt P, Rabaeys P, Gevaert D (2007) Effects of toltrazuril on the growth of piglets in herds without clinical isosporosis. Vet J 173: 199–201CrossRefGoogle Scholar
  26. Sotiraki S, Roepstorff A, Murrell KD, Nielsen JP, Maddox-Hyttel C, Boes J, et al (2007) The effect of pen contamination level on intra-litter spread of Isospora suis infection under on-farm conditions. IPVS, HamburgGoogle Scholar
  27. Fayer R, Mahrt JL (1972) Development of Isospora canis (Protozoa; Sporozoa) in cell culture. Z Parasitenkd 38: 313–318PubMedCrossRefGoogle Scholar
  28. Lindsay DS, Blagburn BL (1987) Development of Isospora suis from pigs in primary porcine and bovine cell cultures. Vet Parasitol 24: 301–304PubMedCrossRefGoogle Scholar
  29. Lindsay DS, Blagburn BL, Toivio-Kinnucan M (1991) Ultrastructure of developing Isospora suis in cultured cells. Am J Vet Res 52: 471–473PubMedGoogle Scholar
  30. Lindsay DS, Quick DP, Steger AM, Toivio-Kinnucan MA, Blagburn BL (1998) Complete development of the porcine coccidium Isospora suis Biester, 1934 in cell cultures. J Parasitol 84: 635–637PubMedCrossRefGoogle Scholar
  31. Welter MW, Quick DP, Steger AM, Welter LM (1996) Vaccine Potential of a Plasmid Encoding for the Sporozoite Attachment Protein of Isospora suis. In: 14th IPVS Congress, 29-1-2007, Bologna, Italy, p 349Google Scholar
  32. Peschke R, Ruttkowski B, Joachim A (2006) Etablierung einer In-Vitro-Kultur von Isospora suis. In: 22. Jahrestagung der Deutschen Gesellschaft für Parasitologie, ViennaGoogle Scholar
  33. Lindsay DS, Current WL (1984) Complete development of Isopora suis of swine in chicken embryos. J Protozool 31: 152–155PubMedGoogle Scholar
  34. Vetterling JM (1966) Prevalence of coccidia in swine from six localities in the United States. Cornell Vet 56: 155–166PubMedGoogle Scholar
  35. Lindsay DS, Ernst JV, Current WL, Stuart BP, Stewart TB (1984) Prevalence of oocysts of Isospora suis and Eimeria spp. from sows on farms with and without a history of neonatal coccidiosis. J Am Vet Med Assoc 185: 419–421PubMedGoogle Scholar
  36. Stuart BP, Sisk DB, Bedell DM, Gosser HS (1982) Demonstration of immunity against Isospora suis in swine. Vet Parasitol 9: 185–191PubMedCrossRefGoogle Scholar
  37. Stuart BP, Lindsay DS (1986) Coccidiosis in swine. Vet Clin North Am Food Anim Pract 2: 455–468PubMedGoogle Scholar
  38. Baekbo P, Christensen J, Henriksen SA, Nielsen K (1994) Attempts to induce colostral immunity against Isospora suis infections in piglets. In: Proc Int Pig Vet Soc Congr, Bangkok, ThailandGoogle Scholar
  39. Taylor JR (1984) Immune response of pigs to Isospora suis (Apicomplexa, Eimeriidae). PhD-Thesis, Auburn UniversityGoogle Scholar
  40. Wakelin D, Rose M (1990) Immunity to coccidiosis. In: Long PL (ed) coccidiosis of man and domestic animals. CRC Press, Boca Raton, Fla. pp 281–306Google Scholar
  41. Yun CH, Lillehoj HS, Lillehoj EP (2000) Intestinal immune responses to coccidiosis. Dev Comp Immunol 24: 303–324PubMedCrossRefGoogle Scholar
  42. Becker BA, Misfeldt ML (1993) Evaluation of the mitogen-induced proliferation and cell surface differentiation antigens of lymphocytes from pigs 1 to 30 days of age. J Anim Sci 71: 2073–2078PubMedGoogle Scholar
  43. Schwager J, Schulze J (1997) Maturation of the mitogen responsiveness, and IL2 and IL6 production by neonatal swine leukocytes. Vet Immunol Immunopathol 57: 105–119PubMedCrossRefGoogle Scholar
  44. Koudela B, Kucerova S (1999) Role of acquired immunity and natural age resistance on course of Isospora suis coccidiosis in nursing piglets. Vet Parasitol 82: 93–99PubMedCrossRefGoogle Scholar
  45. Koudela B, Kucerova S (2000) Immunity against Isospora suis in nursing piglets. Parasitol Res 86: 861–863PubMedCrossRefGoogle Scholar
  46. McDonald V (1999) Gut intraepithelial lymphocytes and immunity to Coccidia. Parasitol Today 15: 483–487PubMedCrossRefGoogle Scholar
  47. Stuart BP, Bedell DM, Lindsay DS (1982) Coccidiosis in swine: a search for extraintestinal stages of Isospora suis. Vet Rec 110: 82–83PubMedGoogle Scholar
  48. Lunney JK (1993) Characterization of swine leukocyte differentiation antigens. Immunol Today 14: 147–148PubMedCrossRefGoogle Scholar
  49. Saalmüller A (1996) Characterization of swine leukocyte differentiation antigens. Immunol Today 17: 352–354PubMedCrossRefGoogle Scholar
  50. Saalmüller A, Denham S, Haverson K, Davis B, Dominguez J, Pescovitz MD, et al (1996) The Second International Swine CD Workshop. Vet Immunol Immunopathol 54: 155–158PubMedCrossRefGoogle Scholar
  51. Saalmüller A, Pauly T, Lunney JK, Boyd P, Aasted B, Sachs DH, et al (1998) Overview of the Second International Workshop to define swine cluster of differentiation (CD) antigens. Vet Immunol Immunopathol 60: 207–228PubMedCrossRefGoogle Scholar
  52. Summerfield A, Rziha HJ, Saalmüller A (1996) Functional characterization of porcine CD4+CD8+ extrathymic T lymphocytes. Cell Immunol 168: 291–296PubMedCrossRefGoogle Scholar
  53. Saalmüller A, Werner T, Fachinger V (2002) T-helper cells from naive to committed. Vet Immunol Immunopathol 87: 137–145PubMedCrossRefGoogle Scholar
  54. Mackay CR, Maddox JF, Brandon MR (1986) Three distinct subpopulations of sheep T lymphocytes. Eur J Immunol 16: 19–25PubMedCrossRefGoogle Scholar
  55. Saalmüller A, Pauly T, Hohlich BJ, Pfaff E (1999) Characterization of porcine T lymphocytes and their immune response against viral antigens. J Biotechnol 73: 223–233PubMedCrossRefGoogle Scholar
  56. Stokes CR, Bailey M (2000) The porcine gastrointestinal lamina propria: an appropriate target for mucosal immunisation? J Biotechnol 83: 51–55PubMedCrossRefGoogle Scholar
  57. Rothkötter HJ, Pabst R (1989) Lymphocyte subsets in jejunal and ileal peyer's patches of normal and gnotobiotic minipigs. Immunology 67: 103–108PubMedGoogle Scholar
  58. Bailey M, Plunkett FJ, Rothkötter HJ, Vega-Lopez MA, Haverson K, Stokes CR (2001) Regulation of mucosal immune responses in effector sites. Proceedings of the Nutrition Society 60: 427–435PubMedCrossRefGoogle Scholar
  59. Wilson AD, Haverson K, Southgate K, Bland PW, Stokes CR, Bailey M (1996) Expression of major histocompatibility complex class II antigens on normal porcine intestinal endothelium. Immunology 88: 98–103PubMedCrossRefGoogle Scholar
  60. Haverson K, Singha S, Stokes CR, Bailey M (2000) Professional and non-professional antigen-presenting cells in the porcine small intestine. Immunology 101: 492–500PubMedCrossRefGoogle Scholar
  61. Mowat AM, Viney JL (1997) The anatomical basis of intestinal immunity. Immunol Rev 156: 145–166PubMedCrossRefGoogle Scholar
  62. Laurent F, Eckmann L, Savidge TC, Morgan G, Theodos C, Naciri M, et al (1997) Cryptosporidium parvum infection of human intestinal epithelial cells induces the polarized secretion of C-X-C chemokines. Infection and Immunity 65: 5067–5073PubMedGoogle Scholar
  63. Seydel KB, Zhang T, Champion GA, Fichtenbaum C, Swanson PE, Tzipori S, et al (1998) Cryptosporidium parvum Infection of human intestinal xenografts in SCID mice induces production of human tumor necrosis factor alpha and interleukin-8. Infection and Immunity 66: 2379–2382PubMedGoogle Scholar
  64. Hermosilla C, Zahner H, Taubert A (2006) Eimeria bovis modulates adhesion molecule gene transcription in and PMN adhesion to infected bovine endothelial cells. Int J Parasitol 36: 423–431PubMedCrossRefGoogle Scholar
  65. Schito ML, Barta JR (1997) Nonspecific immune responses and mechanisms of resistance to Eimeria papillata infections in mice. Infect Immun 65: 3165–3170PubMedGoogle Scholar
  66. Blake DP, Shirley MW, Smith AL (2006) Genetic identification of antigens protective against coccidia. Parasite Immunol 28: 305–314PubMedCrossRefGoogle Scholar
  67. Lillehoj HS, Trout JM (1996) Avian gut-associated lymphoid tissues and intestinal immune responses to Eimeria parasites. Clin Microbiol Rev 9: 349–360PubMedGoogle Scholar
  68. Girard F, Fort G, Yvore P, Quere P (1997) Kinetics of specific immunoglobulin A, M and G production in the duodenal and caecal mucosa of chickens infected with Eimeria acervulina or Eimeria tenella. Int J Parasitol 27: 803–809PubMedCrossRefGoogle Scholar
  69. Lillehoj HS (1986) Immune response during coccidiosis in SC and FP chickens. I. In vitro assessment of T cell proliferation response to stage-specific parasite antigens. Vet Immunol Immunopathol 13: 321–330PubMedCrossRefGoogle Scholar
  70. Rose ME, Hesketh P (1984) Infection with Eimeria tenella: modulation of lymphocyte blastogenesis by specific antigen, and evidence for immunodepression. J Protozool 31: 549–553PubMedGoogle Scholar
  71. Rose ME, Wakelin D, Joysey HS, Hesketh P (1988) Immunity to coccidiosis: adoptive transfer in NIH mice challenged with Eimeria vermiformis. Parasite Immunol 10: 59–69PubMedCrossRefGoogle Scholar
  72. Culshaw RJ, Bancroft GJ, McDonald V (1997) Gut intraepithelial lymphocytes induce immunity against Cryptosporidium infection through a mechanism involving gamma interferon production. Infect Immun 65: 3074–3079PubMedGoogle Scholar
  73. Schito ML, Barta JR, Chobotar B (1996) Comparison of four murine Eimeria species in immunocompetent and immunodeficient mice. J Parasitol 82: 255–262PubMedCrossRefGoogle Scholar
  74. Lillehoj HS (1994) Analysis of Eimeria acervulina-induced changes in the intestinal T lymphocyte subpopulations in two chicken strains showing different levels of susceptibility to coccidiosis. Res Vet Sci 56: 1–7PubMedGoogle Scholar
  75. Trout JM, Lillehoj HS (1993) Evidence of a role for intestinal CD8+ lymphocytes and macrophages in transport of Eimeria acervulina sporozoites. J Parasitol 79: 790–792PubMedCrossRefGoogle Scholar
  76. Trout JM, Lillehoj HS (1995) Eimeria acervulina infection: evidence for the involvement of CD8+ T lymphocytes in sporozoite transport and host protection. Poult Sci 74: 1117–1125PubMedGoogle Scholar
  77. Trout JM, Lillehoj HS (1996) T lymphocyte roles during Eimeria acervulina and Eimeria tenella infections. Vet Immunol Immunopathol 53: 163–172PubMedCrossRefGoogle Scholar
  78. Hermosilla C, Burger HJ, Zahner H (1999) T cell responses in calves to a primary Eimeria bovis infection: phenotypical and functional changes. Vet Parasitol 84: 49–64PubMedCrossRefGoogle Scholar
  79. Smith AL, Hayday AC (2000) An alphabeta T-cell-independent immunoprotective response towards gut coccidia is supported by gammadelta cells. Immunology 101: 325–332PubMedCrossRefGoogle Scholar
  80. Ramsburg E, Tigelaar R, Craft J, Hayday A (2003) Age-dependent requirement for gammadelta T cells in the primary but not secondary protective immune response against an intestinal parasite. J Exp Med 198: 1403–1414PubMedCrossRefGoogle Scholar
  81. Roberts SJ, Smith AL, West AB, Wen L, Findly RC, Owen MJ, et al (1996) T-cell alpha beta + and gamma delta + deficient mice display abnormal but distinct phenotypes toward a natural, widespread infection of the intestinal epithelium. Proc Natl Acad Sci USA 93: 11774–11779PubMedCrossRefGoogle Scholar
  82. Smith AL, Hayday AC (2000) Genetic dissection of primary and secondary responses to a widespread natural pathogen of the gut, Eimeria vermiformis. Infect Immun 68: 6273–6280PubMedCrossRefGoogle Scholar
  83. Inagaki-Ohara K, Dewi FN, Hisaeda H, Smith AL, Jimi F, Miyahira M, et al (2006) Intestinal intraepithelial lymphocytes sustain the epithelial barrier function against Eimeria vermiformis infection. Infect Immun 74: 5292–5301PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Hanna L. Worliczek
    • 1
  • Marc Buggelsheim
    • 1
  • Armin Saalmüller
    • 2
  • Anja Joachim
    • 1
  1. 1.Institute of Parasitology and Zoology, Department of PathobiologyUniversity of Veterinary Medicine ViennaViennaAustria
  2. 2.Clinical Immunology, Clinical Department for Diagnostic Imaging, Infectious Diseases and Clinical PathologyUniversity of Veterinary Medicine ViennaViennaAustria

Personalised recommendations