Skip to main content
Log in

Analysis of long-chain ω-3 fatty acid content in fish-oil supplements

Analyse des Gehalts langkettiger ω-3 Fettsäuren in Fischölpräparaten

  • Original Article
  • Published:
Wiener klinische Wochenschrift Aims and scope Submit manuscript

Zusammenfassung

HINTERGRUND: In zahlreichen Studien wurden die verschiedensten vorteilhaften Effekte von mehrfach ungesättigten Omega 3 Fettsäuren auf Atherosklerose, Arrhythmie und Hypertriglyzeridämie nachgewiesen, was zahlreiche Gesundheitsorganisationen dazu veranlasst hat, einen täglichen Verzehr von einem Gramm Omega 3 Fettsäuren täglich für antiatherosklerotische sowie antiarrhytmische Wirkungen oder zwei bis vier g/d Omega 3 Fettsäuren zur Senkung der Plasmatriglyzeride zu empfehlen. Es sind zahlreiche Präparate auf dem Markt erschienen, welche die ω-3 PUFA-arme westliche Ernährung in Form von Kapseln ergänzen. Da diese Präparate beträchtlichen Variationen des Gehalts an langkettigen ω-3 PUFAs unterworfen sein können, haben wir neun kommerziell erhältliche Produkte bezugnehmend auf ihre Fettsäurekomposition getestet. METHODEN: Neun kommerziell erhältliche ω-3 PUFA Nahrungsergänzungsmittel wurden mittels kapillärer Gaschromatographie auf ihren Gehalt an langkettigen ω-3 PUFA untersucht. ERGEBNISSE: Die neun von uns getesteten Präparate zeigen hinsichtlich der Konzentration an langkettigen ω-3 PUFA große Unterschiede von bis zu 63,7 ± 1,58 mol % (p = 0,002) und die Meisten scheitern daran, die empfohlene Tagesdosis von einem Gramm zu erzielen, selbst wenn sie in der höchsten vom Hersteller angegebenen Dosierung verabreicht werden. Acht der Präparate enthalten entweder gleiche oder signifikant höhere langkettige ω-3 PUFA Mengen als vom Hersteller angegeben und ein Hersteller macht keine Angabe. Die höchsten Anteile an Eicosapentaensäure (EPA) und Docosahexaensäure (DHA) wurden in Omacor® (95,80 ± 0,63%) und Percucor® (76,8 ± 7,11%) vorgefunden. KONKLUSION: Verabreichung von langkettigen ω-3 Fettsäurepräparaten kann in großen Unterschieden der tatsächlich konsumierten Menge resultieren. Daher ist es empfehlenswert, die am höchsten standardisierten und gereinigten Produkte zu verwenden.

Summary

BACKGROUND: Omega-3 polyunsaturated fatty acids (long-chain ω-3 PUFA) have proved to be beneficial in atherosclerosis, arrhythmia and hypertriglyceridemia in several studies, which has led national and international societies to recommend an intake of 1 g/d long-chain ω-3 PUFA for antiatherosclerotic and antiarrhythmic purposes or 2–4 g/d for a lipid lowering effect. Numerous preparations are marketed for supplementing western diet, which is low in long-chain ω-3 PUFA. Since these preparations vary in their long-chain ω-3 PUFA content, we tested nine commercially available products for their fatty acid composition. METHODS: Nine commercially available ω-3 fatty acid supplements were analyzed using capillary gas chromatography to determine their fatty acid content. RESULTS: The nine preparations showed huge differences, up to 63.7 ± 1.58 mol% (P = 0.002), in their longchain ω-3 fatty acid content. Most of them failed to achieve the daily recommended dose of 1 g, even when administered at the highest dosage according to the manufacturer's recommendations. Eight of the preparations contained either equal or significantly greater amounts of long-chain ω-3 PUFA than denoted by the manufacturer; one preparation did not provide any information. The highest percentage of DHA and EPA was detected in Omacor® (95.80 ± 0.63%) and Percucor® (76.8 ± 7.109%). CONCLUSION: Administering long-chain ω-3 fatty acid preparations may result in huge differences in terms of the actual amount ingested. It is therefore advisable to use the most standardized and purified products available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Dyerberg J, Bang HO, Stoffersen E, Moncada S, Vane JR (1978) Eicosapentaenoic acid and prevention of thrombosis and atherosclerosis? Lancet 2 (8081): 117–119

    Article  PubMed  CAS  Google Scholar 

  • Burr ML, Fehily AM, Gilbert JF, Rogers S, Holliday RM, Sweetnam PM, et al (1989) Effects of changes in fat, fish, and fibre intakes on death and myocardial reinfarction: diet and reinfarction trial (DART). Lancet 2 (8666): 757–761

    Article  PubMed  CAS  Google Scholar 

  • Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto miocardico (1999) Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial. Lancet 354 (9177): 447–455

    Article  Google Scholar 

  • Newman WP, Middaugh JP, Propst MT, Rogers DR (1993) Atherosclerosis in Alaska natives and non-natives. Lancet 341 (8852): 1056–1057

    Article  PubMed  CAS  Google Scholar 

  • Hopper L, Ness A, Higgins JP, Moore T, Ebrahim S (1999) GISSI-Prevenzione trial. Lancet 354 (9189): 1557

    Article  PubMed  CAS  Google Scholar 

  • Abeywardena MY, Head RJ (2001) Longchain ω-3 polyunsaturated fatty acids and blood vessel function. Cardiovasc Res 52 (3): 361–371

    Article  PubMed  CAS  Google Scholar 

  • Din JN, Newby DE, Flapan AD (2004) Omega 3 fatty acids and cardiovascular disease – fishing for a natural treatment. Brit Med J 328 (7430): 30–35

    Article  PubMed  CAS  Google Scholar 

  • Harrison N, Abhyankar B (2005) The mechanism of action of omega-3 fatty acids in secondary prevention post-myocardial infarction. Curr Med Res Opin (1): 95–100

  • Wang C, Chung M, Lichtenstein A, Balk E, Kupelnick B, DeVine D, et al (2004) Effects of omega-3 fatty acids on cardiovascular disease. Evid Rep Technol Assess (Summ) (94): 1–8

  • Wijendran V, Hayes KC (2004) Dietary n-6 and n-3 fatty acid balance and cardiovascular health. Annu Rev Nutr 24: 597–615

    Article  PubMed  CAS  Google Scholar 

  • De Caterina R, Massaro M (2005) Omega-3 fatty acids and the regulation of expression of endothelial pro-atherogenic and pro-inflammatory genes. J Membr Biol 206 (2): 103–116

    Article  PubMed  CAS  Google Scholar 

  • Hornstra G (1989) Dietary lipids, platelet function and arterial thrombosis. Wien Klin Wochenschr 101 (8): 272–277

    PubMed  CAS  Google Scholar 

  • Gazso A, Kaliman J, Horrobin DF, Sinzinger H (1989) Effects of omega-3-fatty acids on the prostaglandin system in healthy probands. Wien Klin Wochenschr 101 (8): 283–288

    PubMed  CAS  Google Scholar 

  • Mori TA, Bao DQ, Burke V, Puddey IB, Beilin LJ (1999) Docosahexaenoic acid but not eicosapentaenoic acid lowers ambulatory blood pressure and heart rate in humans. Hypertension 34 (2): 253–260

    PubMed  CAS  Google Scholar 

  • Abeywardena MY, Head RJ (2001) Dietary polyunsaturated fatty acid and antioxidant modulation of vascular dysfunction in the spontaneously hypertensive rat. Prostaglandins Leukot Essent Fatty Acids 65 (2): 91–97

    Article  PubMed  CAS  Google Scholar 

  • Leaf A, Albert CM, Josephson M, Steinhaus D, Kluger J, Kang JX, et al (2005) Prevention of fatal arrhythmias in high-risk subjects by fish oil n-3 fatty acid intake. Circulation 112 (18): 2762–2768

    Article  PubMed  CAS  Google Scholar 

  • Rupp H, Wahl R, Hansen M (1992) Influence of diet and carnitine palmitoyltransferase I inhibition on myosin and sarcoplasmic reticulum. J Appl Physiol 72 (1): 352–360

    PubMed  CAS  Google Scholar 

  • Madsen L, Rustan AC, Vaagenes H, Berge K, Dyroy E, Berge RK (1999) Eicosapentaenoic and docosahexaenoic acid affect mitochondrial and peroxisomal fatty acid oxidation in relation to substrate preference. Lipids 34 (9): 951–963

    Article  PubMed  CAS  Google Scholar 

  • Holness MJ, Greenwood GK, Smith ND, Sugden MC (2003) Diabetogenic impact of long-chain omega-3 fatty acids on pancreatic beta-cell function and the regulation of endogenous glucose production. Endocrinology 144 (9): 3958–3968

    Article  PubMed  CAS  Google Scholar 

  • Kris-Etherton PM, Harris WS, Appel LJ (2002) Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation 106 (21): 2747–2757

    Article  PubMed  Google Scholar 

  • Hites RA, Foran JA, Carpenter DO, Hamilton MC, Knuth BA, Schwager SJ (2004) Global assessment of organic contaminants in farmed salmon. Science 303 (5655): 226–229

    Article  PubMed  CAS  Google Scholar 

  • Deutch B, Pedersen HS, Hansen JC (2004) Dietary composition in Greenland 2000, plasma fatty acids and persistent organic pollutants. Sci Total Environ 331 (1–3): 177–188

    PubMed  CAS  Google Scholar 

  • Rembold CM (2004) The health benefits of eating salmon. Science 305 (5683): 475; author reply

    Article  PubMed  Google Scholar 

  • Kang JX, Wang J (2005) A simplified method for analysis of polyunsaturated fatty acids. BMC Biochem 6: 5

    Article  PubMed  Google Scholar 

  • Voss A, Reinhart M, Sankarappa S, Sprecher H (1991) The metabolism of 7,10,13,16,19-docosapentaenoic acid to 4,7,10,13,16,19-docosahexaenoic acid in rat liver is independent of a 4-desaturase. J Biol Chem 266 (30): 19995–20000

    PubMed  CAS  Google Scholar 

  • Emken EA, Adlof RO, Gulley RM (1994) Dietary linoleic acid influences desaturation and acylation of deuterium-labeled linoleic and linolenic acids in young adult males. Biochim Biophys Acta 1213 (3): 277–288

    PubMed  CAS  Google Scholar 

  • Pawlosky RJ, Hibbeln JR, Novotny JA, Salem N Jr (2001) Physiological compartmental analysis of alpha-linolenic acid metabolism in adult humans. J Lipid Res 42 (8): 1257–1265

    PubMed  CAS  Google Scholar 

  • Hussein N, Ah-Sing E, Wilkinson P, Leach C, Griffin BA, Millward DJ (2005) Long-chain conversion of [13C] linoleic acid and alpha-linolenic acid in response to marked changes in their dietary intake in men. J Lipid Res 46 (2): 269–280

    Article  PubMed  CAS  Google Scholar 

  • Finnegan YE, Minihane AM, Leigh-Firbank EC, Kew S, Meijer GW, Muggli R, et al (2003) Plant- and marinederived ω-3 polyunsaturated fatty acids have differential effects on fasting and postprandial blood lipid concentrations and on the susceptibility of LDL to oxidative modification in moderately hyperlipidemic subjects. Am J Clin Nutr 77 (4): 783–795

    PubMed  CAS  Google Scholar 

  • McLennan PL (2001) Myocardial membrane fatty acids and the antiarrhythmic actions of dietary fish oil in animal models. Lipids 36 [Suppl]: S111–S114

    Article  PubMed  CAS  Google Scholar 

  • Ikeda I, Imasato Y, Nagao H, Sasaki E, Sugano M, Imaizumi K, et al (1993) Lymphatic transport of eicosapentaenoic and docosahexaenoic acids as triglyceride, ethyl ester and free acid, and their effect on cholesterol transport in rats. Life Sci 52 (16): 1371–1379

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph F. Ebenbichler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tatarczyk, T., Engl, J., Ciardi, C. et al. Analysis of long-chain ω-3 fatty acid content in fish-oil supplements. Wien Klin Wochenschr 119, 417–422 (2007). https://doi.org/10.1007/s00508-007-0820-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00508-007-0820-5

Keywords

Navigation