Skip to main content
Log in

The microbiological water quality of Vienna’s River Danube section and its associated water bodies

Die mikrobiologische Wasserqualität der Donau und ihrer Nebengewässer in Wien

  • Originalarbeit
  • Published:
Österreichische Wasser- und Abfallwirtschaft Aims and scope

Abstract

For the City of Vienna, the River Danube and its associated water bodies (Alte Donau, Neue Donau, Mühlwasser, Lobau backwater) play an important role for recreation and drinking water supply. Microbiological water quality is of highest relevance for all user-related aspects. Microbiological water quality monitoring for this area has been mainly based on the standard fecal indicator bacteria Escherichia coli and intestinal enterococci, but has also applied alternative fecal indicators Clostridium perfringens and somatic coliphages as well as selected pathogens, like Salmonella sp. and enteroviruses. This article presents and compares available monitoring results from the last decade – 2004 to 2014 – for Vienna’s River Danube section and its associated water bodies using a five-step classification scheme for fecal pollution. For one selected Danube site, a statistical long-term trend measurement and a correlation analysis with hydrological and seasonal patterns were performed as well. The challenge of this work was to combine, analyze and compare data from programs with different objectives, which used different parameters and methods. To our knowledge, this is the first comprehensive overview of microbiological water quality data of Vienna’s section of the Danube and its associated water bodies that is accessible to the public.

Zusammenfassung

Für die Stadt Wien spielen die Donau und ihre Nebengewässer (Alte und Neue Donau, Mühlwasser, Altarmsystem in der Lobau) eine wichtige Rolle als Naherholungsgebiete und für die Trinkwasserversorgung. Das mikrobiologische Qualitäts-Monitoring für den Raum Wien basiert vorwiegend auf den Standardfäkalindikatorbakterien Escherichia coli und den intestinalen Enterokokken, nützt jedoch auch alternative Fäkalindikatoren, wie Clostridium perfringens und somatische Coliphagen, sowie ausgewählte pathogene Mikroorganismen wie Salmonellen und Enteroviren. Diese Studie präsentiert und vergleicht verfügbare Monitoring-Daten für die Donau und ihre Nebengewässer im Raum Wien aus dem Zeitraum 2004 bis 2014. Ein fünfstufiges Klassifikationssystem erleichtert den Vergleich. Darüber hinaus wurden für eine ausgewählte Donaustelle langzeitige Trends und saisonale Muster der mikrobiologischen Qualität analysiert sowie der hydrologische Einfluss darauf ausgewertet. Die Herausforderung bei der Auswertung war das Zusammenführen, Auswerten und Vergleichen von unterschiedlichsten Datensätzen aus diversen Monitoring-Programmen, die unterschiedliche Untersuchungsparameter und Analysenmethoden beinhalteten. Dies ist der erste umfassende vergleichende Überblick über die mikrobiologische Wasserqualität der Donau und ihrer Nebengewässer in Wien, der für die Öffentlichkeit verfügbar ist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Literature

  • Aqua press international (2010): A Year of Success for ebswien hauptkläranlage. Aqua press international 4:7

  • Assmann M, Dürr K, Haberfellner-Veit E, Laber J, Lindtner S, Tschiesche U (2015): Branchenbild der österreichischen Abwasserwirtschaft 2016. In. Österreichischer Wasser- und Abfallwirtschaftsverband, Vienna, Austria, S 48

  • Berger B, Hoch BM, Kavka G, Herndl GJ (1995): Die bakterielle Gemeinschaft der Donau im Raum Wien: Mikrobiell ökologische Parameter im Vergleich zu bakteriologischen Gewässergüteparametern und ihre Einflussfaktoren. Österreichische Wasser- und Abfallwirtschaft 47 (11-12):282–288

    Google Scholar 

  • Bisson JW, Cabelli VJ (1980): Clostridium perfringens as a water-pollution indicator. Journal Water Pollution Control Federation 52 (2):241–248

    Google Scholar 

  • de Brauwere A, Ouattara NK, Servais P (2014): Modeling fecal indicator bacteria concentrations in natural surface waters: a review. Critical Reviews in Environmental Science and Technology 44:2380–2453. doi:10.1080/10643389.2013.829978

  • Bronaugh D (2015): Zhang + Yue-Pilon trends package (Package ‘zyp’). Version 0.10-1.

  • Burn DH, Hag Elnur MA (2002): Detection of hydrologic trends and variability. Journal of Hydrology 255 (1–4):107–122. doi:10.1016/S0022-1694(01)00514-5

    Article  Google Scholar 

  • Byappanahalli MN, Nevers MB, Korajkic A, Staley ZR, Harwood VJ (2012): Enterococci in the Environment. Microbiology and Molecular Biology Reviews 76 (4):685–706

    Article  Google Scholar 

  • Chang SL, Berg G, Busch KA, Stevenson RE, Clarke NA, Kabler PW (1958): Application of the “most probable number” method for estimating concentrations of animal viruses by the tissue culture technique. Virology 6 (1):27–42. doi:10.1016/0042-6822(58)90057-6

    Article  Google Scholar 

  • Dahling DR, Wright BA (1986): Optimization of the BGM cell line culture and viral assay procedures for monitoring viruses in the environment. Applied and Environmental Microbiology 51 (4):790–812

    Google Scholar 

  • Derx J, Schijven J, Sommer R, Zoufal-Hruza CM, van Driezum IH, Reischer G, Ixenmaier S, Kirschner AK, Frick C, de Roda Husman AM, Farnleitner AH, Blaschke AP (2016): QMRAcatch: Human-associated faecal pollution and infection risk modelling for a river/floodplain environment. Journal of Environmental Quality. doi:10.2134/jeq2015.11.0560

  • Deutsches Institut für Normung (1976): DIN 38404-4 – Deutsche Einheitsverfahren zur Wasser-, Abwasser- und Schlammuntersuchung; Physikalische und physikalisch-chemische Kenngrößen (Gruppe C); Bestimmung der Temperatur (C 4). Germany

  • EU (2006): Directive 2006/7/EC of the European Parliament and of the Council of 15 February 2006 concerning the management of bathing water quality and repealing Directive 76/160/EEC

  • Europäische Umweltagentur (2015): Qualität der europäischen Badegewässer 2014. doi:10.2800/664858

  • Farnleitner A, Sommer R (2015): Wasserqualität und Gesundheit: zukünftige Herausforderungen? Schriftenreihe ÖWAV Heft 170 Zukunft denken – Wasserwirtschaft 2035

  • Farnleitner AH, Mach RL, Reischer GH, Kavka GG (2007): Mikrobiologisch-hygienische Risiken trotz Abwasserentsorgung nach dem Stand der Technik. Wiener Mitteilungen 201:209–242

  • Farnleitner AH, Ryzinska-Paier G, Reischer GH, Burtscher MM, Knetsch S, Kirschner AKT, Dirnboeck T, Kuschnig G, Mach RL, Sommer R (2010): Escherichia coli and enterococci are sensitive and reliable indicators for human, livestock and wildlife faecal pollution in alpine mountainous water resources. Journal of Applied Microbiology 109 (5):1599–1608. doi:10.1111/j.1365-2672.2010.04788.x

    Google Scholar 

  • Farnleitner AH, Reischer GH, Savio DF, Frick C, Schuster N, Schilling K, Mach RL, Derx J, Kirschner AK, Blaschke AP, Sommer R (2014): Diagnostik mikrobiologischer Fäkalkontamination in Wasser und Gewässern: Status Quo und gegenwärtige Entwicklungen. Wiener Mitteilungen 230:157–184

  • Farnleitner AH, Reischer GH, Stadler H, Kollanur D, Sommer R, Zerobin W, Blöschl G, Barella KM, Truesdale JA, Casarez EA, di Giovanni GD (2011): Agricultural and Rural Watersheds. In: Hagedorn C, Blanch AR, Harwood VJ (Hrsg): Microbial Source Tracking: Methods, Applications, and Case Studies. Springer, New York, Dordrecht, Heidelberg, London, S 399–431

  • Hoch B, Berger B, Kavka G, Herndl GJ (1996): Influence of wastewater treatment on the microbial ecology of a lagre, temperate river sysem – the Danube River. Hydrobiologia 321:205–218

    Article  Google Scholar 

  • International Organisation for Standardisation (1986): ISO 6461-2 Water quality – Detection and enumeration of the spores of sulfite-reducing anaerobes (clostridia) – Part 2: Method by membrane filtration. Geneva, Switzerland

  • International Organisation for Standardisation (1995): ISO 6340 Water quality – Detection and enumeration of Salmonella. Geneva, Switzerland

  • International Organisation for Standardisation (1998): EN ISO 9308-3 Water quality – Detection and enumeration of Escherichia coli and coliform bacteria – Part 3: Miniaturized method (Most probable number) for the detection and enumeration of E. coli in surface and waste water. Geneva, Switzerland

  • International Organisation for Standardisation (1999): ISO 7027 Water quality – Determination of turbidity. Geneva. Switzerland

  • International Organisation for Standardisation (2000): ISO 7899-2 Water quality – Detection and enumeration of intestinal enterococci – Part 2: Membrane filtration method. Geneva, Switzerland

  • International Organisation for Standardisation (2001a): EN ISO 10705-2: Water quality – Detection and enumeration of bacteriophages – Part 2: Enumeration of somatic coliphages. Geneva, Switzerland

  • International Organisation for Standardisation (2001b): ISO 16649-2 Microbiology of food and animal feeding stuffs – Horizontal method for the enumeration of beta-glucuronidase-positive Escherichia coli - Part 2: Colony-count technique at 44 degrees C using 5‑bromo-4-chloro-3-indolyl beta-D-glucuronide. Geneva, Switzerland

  • International Organisation for Standardisation (2003): ISO 10705-3 – Wasserbeschaffenheit – Nachweis und Zählung von Bakteriophagen – Teil 3: Validierung von Verfahren für die Konzentration von Bakteriophagen in Wasser. Geneva, Switzerland

  • International Organisation for Standardisation (2005): ISO/IEC 17025 – General requirements for the competence of testing and calibration laboratories. Geneva, Switzerland

  • International Organisation for Standardisation (2010): ISO 19250 Water quality – Detection of Salmonella spp. Geneva, Switzerland

  • International Organisation for Standardisation (2012): ISO 9308-2 Water quality – Enumeration of Escherichia coli and coliform bacteria – Part 2: Most probable number method. Geneva, Switzerland

  • International Organisation for Standardisation (2013): ISO 14189 Water quality – Enumeration of Clostridium perfringens – Method using membrane filtration. Geneva, Switzerland

  • Ishii S, Sadowsky MJ (2008): Escherichia coli in the environment: Implications for water quality and human health. Microbes and Environments 23(2):101–108. doi:10.1264/jsme2.23.101

  • Jamieson R, Gordon R, Joy D, Lee H (2004): Assessing microbial pollution of rural surface waters – A review of current watershed scale modeling approaches. Agricultural Water Management 70(1):1–17. doi:10.1016/j.agwat.2004.05.006

  • Kavka GG, Berger B, Hoch BM, Herndl GJ (1996): Assessment of microbiological water quality in the Austrian section of the River Danube. Archiv fuer Hydrobiologie Supplement 113 (1-4):79–86

  • Kavka GG, Kasimir GD, Farnleitner AH Microbiological water quality of the River Danube (km 2581–km 15): longitudinal variation of pollution as determined by standard parameters. In: 36th International Conference of IAD 2006, Vienna, 2006. Austrian Committee Danube Research/IAD, S 415–421

  • Kirschner AK, Kavka GG, Velimirov B, Reischer GH, Mach RL, Farnleitner AH (2008): Microbiological water quality and DNA-based quantitative microbial source tracking. In: Liska I, Wagner F, Slobodnik J (Hrsg) Joint Danube Survey 2. Final scientific report. ICPDR, Vienna, Austria, S 86–95

  • Kirschner AKT, Kavka GG, Velimirov B, Mach RL, Sommer R, Farnleitner AH (2009): Microbiological water quality along the Danube River: Integrating data from two whole-river surveys and a transnational monitoring network. Water research 43 (15):3673–3684. doi:10.1016/j.watres.2009.05.034

    Article  Google Scholar 

  • Kirschner AKT, Jakwerth S, Kolarevic S, Sommer R, Blaschke AP, Kavka G, Reischer GH, Farnleitner AH (2015): Bacterial faecal indicators. In: Liska I, Wagner F, Sengl M, Deutsch K, Slobodnik J (Hrsg) Joint Danube Survey 3. ICPDR, Vienna, S 155–161

    Google Scholar 

  • Kohl W (1975): Über die Bedeutung bakteriologischer Untersuchungen für die Beurteilung von Fließgewässern, dargestellt am Beispiel der österreichischen Donau. Archiv für Hydrobiologie, Supplement 44(4):392–461

  • Leclerc H, Edberg S, Pierzo V, Delattre JM (2000): Bacteriophages as indicators of enteric viruses and public health risk in groundwaters. Journal of Applied Microbiology 88 (1):5–21. doi:10.1046/j.1365-2672.2000.00949.x

    Article  Google Scholar 

  • Ludwig C, Ranner H, Kavka G, Kohi W, Humpesch U (1990): Long-term and seasonal aspects of the water quality of the river Danube within the Region of Vienna (Austria). Water Science and Technology 22 (5):51–58

    Google Scholar 

  • Magistrat der Stadt Wien (n.d. a): Badewasserqualität in Wien. http://www.wien.gv.at/umwelt/wasserbau/wasserwirtschaft/badewasserqualitaet.html. Zugegriffen: 05.08.2015

  • Magistrat der Stadt Wien (n.d. b): Wasserwerk Lobau. https://www.wien.gv.at/wienwasser/versorgung/weg/lobau.html. Zugegriffen: 26.09.2015

  • Magistrat der Stadt Wien (n.d. c): Jahresbewertungen der Wasserqualität von Alter Donau, Neuer Donau und Strandbad Stadlau. https://www.wien.gv.at/forschung/laboratorien/umweltmedizin/wasserhygiene/badewasserqualitaet/jahresbewertung.html. Zugegriffen: 29.02.2016

  • Magistrat der Stadt Wien (2015): Statistisches Jahrbuch der Stadt Wien 2014. Vienna

  • McLeod AI (2011): Kendall rank correlation and Mann-Kendall trend test. Version 2.2.

  • Österreichische Agentur für Gesundheit und Ernährungssicherheit (n.d.) Badegewässermonitoring. http://www.ages.at/themen/umwelt/wasser/badegewaesser/?bundesland=w&cHash=afdb7d5b68f1239f234dc7ab45b0fbc2. Zugegriffen: 29.02.2016

  • Pall E, Niculae M, Kiss T, Sandru CD, Spinu M (2013): Human impact on the microbiological water quality of the rivers. Journal of Medical Microbiology 62:1635–1640. doi:10.1099/jmm.0.055749-0

    Article  Google Scholar 

  • Petto H, Fleckseder H, Humpesch UH (1991): The water quality of the River Danube in the backwaer area above the Altenwörth power station Austria kilometer 1980-2007 from the river mouth. Part 2: long-term development from 1957–1988. Oesterreichische Wasserwirtschaft 43 (3-4):71–81

    Google Scholar 

  • Reischer GH, Kavka GG, Kasper DC, Winter C, Mach RL, Farnleitner AH (2008): Applicability of DNA based quantitative microbial source tracking (QMST) evaluated on a large scale in the Danube River and its important tributaries. Archiv fuer Hydrobiologie Supplement 166 (1-2):117–125

  • Reischer GH, Kollanur D, Vierheilig J, Wehrspaun C, Mach RL, Sommer R, Stadler H, Farnleitner AH (2011): Hypothesis-driven approach for the identification of fecal pollution sources in water resources. Environmental Science & Technology 45 (9):4038–4045. doi:10.1021/es103659s

    Google Scholar 

  • Schijven JF, Husman AMD (2011): Applications of auantitative microbial source tracking (QMST) and auantitative microbial risk assessment (QMRA). Microbial Source Tracking: Methods, Applications, and Case Studies. Springer, New York. doi:10.1007/978-1-4419-9386-1_24

    Google Scholar 

  • Schijven J, Derx J, de Roda Husman AM, Blaschke AP, Farnleitner AH (2015): QMRAcatch: microbial quality simulation of water resources including infection risk assessment. Journal of Environmental Quality. doi:10.2134/jeq2015.01.0048

    Google Scholar 

  • Schöner W, Böhm R, Haslinger K, Blöschl G, Kroiß H, Merz R, Blaschke AP, Viglione A, Parajka J, Salinas JL, Drabek U, Laaha G, Kreuzinger N (2011): Anpassungsstrategien an den Klimawandel für Österreichs Wasserwirtschaft. Studie der Zentralanstalt für Meteorologie und Geodynamik und der Technischen Universität Wien im Auftrag von Bund und Ländern. Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft, Sektion Wasser, Wien

    Google Scholar 

  • Sen PK (1968): Estimates of the Regression Coefficient Based on Kendall’s Tau. Journal of the American Statistical Association 63 (324):1379–1389. doi:10.2307/2285891

    Article  MathSciNet  MATH  Google Scholar 

  • Sobsey MD, Schwab KJ, Handzel TR (1990): A Simple Membrane Filter Method to Concentrate and Enumerate Male-Specific RNA Coliphages. Journal American Water Works Association 82 (9):52–59

  • Stalder GL, Farnleitner A, Sommer R, Beiglbock C, Walzer C (2011a): Hazard- and risk based concepts for the assessment of microbiological water quality – part 2. Wiener Tierarztliche Monatsschrift 98 (3-4):54–65

    Google Scholar 

  • Stalder GL, Sommer R, Walzer C, Mach RL, Beiglboeck C, Blaschke AP, Farnleitner AH (2011b) Hazard- and risk based concepts for the assessment of microbiological water quality – part 1. Wiener Tierarztliche Monatsschrift 98 (1-2):9–24

    Google Scholar 

  • Stewart JR, Gast RJ, Fujioka RS, Solo-Gabriele HM, Meschke JS, Amaral-Zettler LA, del Castillo E, Polz MF, Collier TK, Strom MS, Sinigalliano CD, Moeller PD, Holland AF (2008): The coastal environment and human health: microbial indicators, pathogens, sentinels and reservoirs. Environmental Health 7 (2):1–14. doi:10.1186/1476-069x-7-s2-s3

    Google Scholar 

  • von Storch H, Navarra A (Hrsg) (1995): Analysis of Climate Variability. Applications of Statistical Techniques Springer, Berlin Heidelberg. doi:10.1007/978-3-662-03744-7

    Google Scholar 

  • Überreiter E, Stork C, Windhofen G, Zieritz I (2014): Kommunales Abwasser – Österreichischer Bericht 2014. Bundesministerium für Land- und Forstwirtschaft Umwelt und Wasserwirtschaft, Wien (http://www.bmlfuw.gv.at/wasser/wasserqualitaet/abwasserreinigung/Lagebericht2014.html)

    Google Scholar 

  • Velimirov B, Milosevic N, Kavka GG, Farnleitner AH, Kirschner AKT (2011): Development of the Bacterial Compartment Along the Danube River: a Continuum Despite Local Influences. Microbial Ecology 61 (4):955–967. doi:10.1007/s00248-010-9768-5

    Article  Google Scholar 

  • Vierheilig J, Frick C, Mayer RE, Kirschner AK, Reischer GH, Derx J, Mach RL, Sommer R, Farnleitner AH (2013): Clostridium perfringens is not suitable for the indication of fecal pollution from ruminant wildlife but is associated with excreta from nonherbivorous animals and human sewage. Applied and Environmental Microbiology 79 (16):5089–5092. doi:10.1128/aem.01396-13

    Article  Google Scholar 

  • Walter R, Rüdiger S (1981): Ein Zweistufenverfahren zur Virusanreicherung aus Lösungen mit geringem Virustiter. Journal of Hygiene, Epidemiology, Microbiology and Immunology 25:71–81

  • Wang D, Farnleitner AH, Field KG, Green HC, Shanks OC, Boehm AB (2013): Enterococcus and Escherichia coli fecal source apportionment with microbial source tracking genetic markers – Is it feasible? Water research 47(18):6849–6861. doi:10.1016/j.watres.2013.02.058

    Article  Google Scholar 

  • Weigelhofer G, Reckendorfer W, Funk A, Hein T (2013): Floodplain revitalization: potential and limitations as seen in the Lobau, Donau-Auen National Park. Oesterreichische Wasser- und Abfallwirtschaft 65 (11–12):400–407. doi:10.1007/s00506-013-0115-1

  • Wilkes G, Edge T, Gannon V, Jokinen C, Lyautey E, Medeiros D, Neumann N, Ruecker N, Topp E, Lapen DR (2009): Seasonal relationships among indicator bacteria, pathogenic bacteria, Cryptosporidium oocysts, Giardia cysts, and hydrological indices for surface waters within an agricultural landscape. Water research 43 (8):2209–2223. doi:10.1016/j.watres.2009.01.033

    Article  Google Scholar 

  • Yost CK, Diarra MS, Topp E (2011): Animals and Humans as Sources of Fecal Indicator Bacteria. In: Sadowsky MJ, Whitman R (Hrsg) The Fecal Bacteria. ASM Press, Washington, S 67–92

    Chapter  Google Scholar 

  • Yue S, Pilon P, Phinney BOB (2003): Canadian streamflow trend detection: impacts of serial and cross-correlation. Hydrological Sciences Journal 48 (1):51–63. doi:10.1623/hysj.48.1.51.43478

Download references

Acknowledgements

This paper was supported by the Austrian Science Fund (FWF) as part of the “Vienna Doctoral Program on Water Resource Systems” (W1219-N22), the FWF single project Unify (P23900-B22) and the research project “Groundwater Resource Systems Vienna,” in cooperation with Vienna Water as part of the “(New) Danube-Lower Lobau Network Project” [Gewässervernetzung (Neue) Donau-Untere Lobau (Nationalpark Donau-Auen)] funded by the Government of Austria (Federal Ministry of Agriculture, Forestry, Environment & Water Management), the Government of Vienna, and the European Agricultural Fund for Rural Development (project LE 07-13). For laboratory assistance, we also acknowledge the laboratory teams at Vienna Municipal Department 39 (Doris Ruzic, Marian Huth and Markus Hrast) and at the Medical University of Vienna (Sonja Knetsch and Andrea Lettl). We thank the Vienna Municipal Departments 31, 44 and 45 for the permission to publish the data. This work represents a joint effort of the Interuniversity Cooperation Center for Water & Health (www.waterandhealth.at).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina Frick.

Ethics declarations

Conflict of interest

C. Frick, W. Zoufal, C. Zoufal-Hruza, A.K. T. Kirschner, D. Seidl, J. Derx, R. Sommer, A.P. Blaschke, T. Nadiotis-Tsaka and A.H. Farnleitner declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frick, C., Zoufal, W., Zoufal-Hruza, C. et al. The microbiological water quality of Vienna’s River Danube section and its associated water bodies. Österr Wasser- und Abfallw 69, 76–88 (2017). https://doi.org/10.1007/s00506-016-0349-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00506-016-0349-9

Keywords

Navigation