Advertisement

Abfallvermeidung durch industrielle Symbiose

  • Gudrun ObersteinerEmail author
  • Andreas Pertl
Originalarbeit
  • 264 Downloads

Zusammenfassung

Abfallvermeidung hat die höchste Priorität innerhalb der österreichischen und europäischen Abfallgesetzgebung. Trotzdem haben es bisherige Initiativen zur Abfallvermeidung nicht geschafft, das Abfallaufkommen signifikant zu verringern. Im Rahmen des Projektes ZeroWin, gefördert durch das Europäische Rahmenprogramm (FP7), wurde versucht, basierend auf einem neuen Produktionsmodell durch optimalen Produkteinsatz sowie innovative Wiederverwendung von Abfällen bzw. Nebenprodukten das Abfallvermeidungspotenzial bestmöglich auszuschöpfen. Anhand von neun Fallstudien aus den Industriebereichen IKT (Informations- und Kommunikationstechnologie), Photovoltaik, Bau und Automobil wurden Optimierungsmöglichkeiten getestet und deren Umwelteffekte analysiert. Im vorliegenden Beitrag werden die Ergebnisse dieses groß angelegten internationalen Projektes für zwei der Fallstudien näher erläutert.

Waste Avoidance Through Industrial Symbiosis

Abstract

Avoiding waste is the topmost priority in Austrian and European legislation. Nevertheless initiatives to date have not succeeded in significantly reducing the production of waste. The project ZeroWin, which was supported by the EU’s Seventh Framework Programme for Research (FP7), was intended to put waste-avoidance potentials to best use with the help of a new production model that optimizes product use and introduces innovative solutions for reusing waste and by-products. Potential optimizations were tested and their environmental effects analyzed on the basis of nine case studies from the fields of information and communications technology (ICT), photovoltaics, construction and the automotive industry. In the following, the findings from two of the case studies conducted in the course of this large-scale international project are presented in detail.

Literatur

  1. Alsema, E. A., Wild-Scholten, M. D. (2004): Environmental life cycle assessment of advanced silicon solar cell technologies. 19th European Photovoltaic Solar Energy Conference, 7–11 June 2004. Paris.Google Scholar
  2. EEA (European Environment Agency). (2010): The European Environment, State and Outlook 2010– Material Resources and Waste. See http://www.eea.europa.eu/soer/europe/material-resources-and-waste (Zugegriffen 15/07/2014).
  3. Eurostat – Europäische Union. (2010): Europa in Zahlen – Eurostat Jahrbuch 2010. Luxemburg: Amt für Veröffentlichungen der Europäischen Union, 2010.Google Scholar
  4. European Commission – Joint Research Centre – Institute for Environment and Sustainability. (2010): International Reference Life Cycle Data System (ILCD) Handbook – General guide for Life Cycle Assessment – Detailed guidance. First edition March 2010. EUR 24708 EN. Luxembourg. Publications Office of the European Union; 2010.Google Scholar
  5. Frischknecht, R., Jungbluth, N. (2007): Ecoinvent reports, Ecoinvent Centre, Swiss Centre for Life Cycle Inventories, Data v2.0 (2007).Google Scholar
  6. Goedkoop, M., Heijungs, R., Huijbregts, M., De Schryver, A., Struijs, J., van Zelm, R. (2013): ReCiPe 2008, A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. First edition (version 1.07) Report I: Characterisation. Hrsg: Ruimte en Milieu, Ministerie van Volkshuisvesting, Ruimtelijke Ordening en Milieubeheer.Google Scholar
  7. Goetz, A., Höchsmann, C. (2010): Baulogistik – Modell eines eigenständigen Dienstleistungsgewerkes für Großbaustellen am Beispiel des Bauprojektes ‚PalaisQuartier‘ in Frankfurt am Main. Wettbewerbsbeitrag Logistics Service Award 2010. See http://www.architekten24.de/mediadb/news/12271/bauserve_Bewerbung_lsa.pdf (Zugegriffen 15/07/2013).
  8. IEA International Energy Agency. (Hrsg.). (2014): PVPS Report: Snapshot of Global PV 1992–2013. Preliminary Trends Information from the IEA PVPS Programme.Google Scholar
  9. ISO. (2006a): Environmental management – Life cycle assessment: Principles and framework. ISO 14040. Geneva.Google Scholar
  10. ISO. (2006b): Environmental management – Life cycle assessment: Requirements and Guidelines. ISO 14044. Geneva.Google Scholar
  11. Jäger-Waldau, A., Szabó, M., Scarlat, N. & Monforti-Ferrario, F. (2011): Renewable electricity in Europe. Renewable and Sustainable Energy Reviews, 15, 3703–3716.Google Scholar
  12. Jungbluth, N., Tuchschmid, M., Wild-Scholten, M. D. (2008): Life Cycle Assessment of Photovoltaics: Update of ecoinvent data v2.0.Google Scholar
  13. Leonhartsberger, K., Fechner, H. (2014): Photovoltaik in: Biermayr P. (Ed.) Innovative Energietechnologien in Österreich – Marktentwicklung 2013, BMVIT.Google Scholar
  14. Masson, G., Orlandi, S., Rekinger, M. (2014): Global Market Outlook for Photovoltaics 2014–2018, European Ohotovoltaic Industry Association (EPIA).Google Scholar
  15. PE International. (2013): GaBi 6.0 software-System and Databases for Life Cycle Engineering. Copyright, TM. Stuttgart, Echterdingen, 1992–2013.Google Scholar
  16. Pehnt, M. (2006): Dynamic life cycle assessment (LCA) of renewable energy technologies. Renewable Energy, 31, 55–71.Google Scholar
  17. Raugei, M. & Frankl, P. (2009): Life cycle impacts and costs of photovoltaic systems: Current state of the art.Google Scholar
  18. Raugei, M., Bargigli, S., Ulgiati, S. (2007): Life cycle assessment and energy pay-back time of advanced photovoltaic modules: CdTe and CIS compared to poly-Si. Energy, 32, 1310–1318.Google Scholar
  19. Scherhaufer, S., Beigl, P., Obersteiner, G. (2013): Waste Prevention in the Photovoltaic Sector by Industrial Symbiosis. The 6th International Conference on Life Cycle Management in Gothenburg 2013.Google Scholar
  20. Tischer, A., Besiou, M. and Graubner, C. A. (2013): Efficient waste management in construction logistics: a refurbishment case study. Logistics Research 6(4): 159–171.Google Scholar
  21. Tischer, A., denBoer, E., Williams, I. D., Curran, T. (2014): Industrial network design by improving construction logistics. Waste and Resource Management Volume 167, Issue WR2, pp 82–94.Google Scholar
  22. Voigtmann, J., Bargstädt, H. (2010): Construction logistics planning by simulation. In Proceedings of the 2010 Winter Simulation Conference, Baltimore 2010 (Johansson B, Jain Sand Montoya-Torres J (eds)). See http://www.informs-sim.org/wsc10papers/296.pdf (Zugegriffen 15/07/2013).

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  1. 1.Institut für AbfallwirtschaftUniversität für Bodenkultur WienWienÖsterreich

Personalised recommendations