Skip to main content
Log in

Active dv/dt filter with SiC MOSFET—interlock-delay effect on the overvoltage at motor terminals

Aktives dU/dt-Filter mit SiC-MOSFETs – Auswirkungen des Interlock-Delay auf Überspannungen an den Motoranschlüssen

  • Originalarbeit
  • Published:
e & i Elektrotechnik und Informationstechnik Aims and scope Submit manuscript

Abstract

WBG semiconductors promise a profound change in power conversion. Among several advantages, the high switching speed of WBG devices allows reducing the size of passive filters.

Based on this characteristic, Silicon Carbide (SiC) MOSFETs, an example of WBG devices, can execute very narrow (< 300 ns) pulse patterns. This can be used to create an additional pulse sequence at each edge of the fundamental PWM at the inverter output. This additional pulse pattern requires just a small LC filter and significantly reduces the dv/dt at the cable input and, thus, at the motor terminals. Faster SiC MOSFETs show less risk of unwanted oscillations, which may occur due to interlock-delay. Much slower Silicon (Si) IGBTs require interlock-delay during the same time period as the additional pulse patterns and, thus, an interlock-delay compensation to mitigate the overvoltage. After presenting the principle of this approach, called Active dv/dt filter (ADVDTF), and a method to determine the pulse pattern, this paper assesses the overvoltage at motor terminals connected to a long cable (150 m) with SiC MOSFETS without interlock-delay compensation. It presents the results of a simulation and of an experimental test with a 1200 V SiC MOSFET power stage.

Zusammenfassung

Der Einsatz von WBG-Halbleitern stellt einen grundlegenden Wandel in der Leistungselektronik in Aussicht. Neben etlichen anderen Vorteilen erlaubt die hohe Schaltgeschwindigkeit von WBG-Leistungshalbleitern, die Größe passiver Filter zu reduzieren.

Diese hohe Schaltgeschwindigkeit erlaubt den Einsatz von Siliziumkarbid(SiC)-MOSFETs, als Beispiel für WBG-Leistungshalbleiter, zur Erzeugung sehr kurzer (< 300 ns) Pulsmuster. Solche kurzen Pulsmuster können an jeder Flanke des ursprünglichen, niederfrequenten PWM-Signals eines Antriebsumrichters eingefügt werden. Damit wird der Aufwand von LC-Filtern signifikant verringert und als Resultat eine starke Reduktion des dU/dt am Eingang eines Motorkabels, und dementsprechend auch an den Motoranschlüssen, erreicht. Aufgrund der hohen Schaltgeschwindigkeit von SiC-MOSFETs ist das Risiko unerwünschter Schwingungen, die durch den Einfluss des Interlock-Delay entstehen können, reduziert. Das wesentlich langsamere Schaltverhalten von Silizium(Si)-IGBTs erfordert Interlock-Delay im Zeitbereich der bevorzugten zusätzlichen Pulsmuster und somit eine entsprechende Kompensation, um das Auftreten von Überspannungen an den Motoranschlüssen zu vermeiden. Nach Vorstellung des grundlegenden Prinzips dieser „Active dv/dt filter“ (ADVDTF) genannten Methode und eines Verfahrens zur Ermittlung dieser zusätzlichen Pulsmuster wird in diesem Artikel das Überspannungsverhalten an den Motoranschlüssen am Ende langer Kabel (150 m), unter Verwendung von SiC-MOSFETs ohne Kompensation des Interlock-Delay, präsentiert. Dabei werden die Ergebnisse einer Simulation und eines Tests an einem realen Inverter, aufgebaut mit 1200-V-SiC-MOSFETS, gegenübergestellt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Zhong E, Lipo TA, Rossiter S (1998) Transient modeling and analysis of motor terminal voltage on PWM inverter-fed AC motor drives. Conf Rec IEEE-IAS Annu Meet 1:773–780

    Google Scholar 

  2. Basavaraja B, Siva Sarma DVSS (2006) Application problem of PWM AC drives due to long cable length and high dv/dt. In: International Conference on Power Electronic, Drives and Energy Systems

    Google Scholar 

  3. Ghassemi M (2019) Accelerated insulation aging due to fast repetitive voltages: A review identifying challenges and future research needs. IEEE Trans Dielectr Electr Insul 26(5):1558–1568

    Article  Google Scholar 

  4. von Jouanne A, Zhang H, Wallace AK (1998) An evaluation of mitigation techniques for bearing currents EMI and over-voltages in ASD applications. IEEE Trans Ind Appl 34:1113–1122

    Article  Google Scholar 

  5. Xue J (2014) High density EMI filter design in high power three-phase motor drive systems, chapter 2. PhD diss., University of Tennessee

  6. Plazenet T, Boileau T (2016) An overview of shaft voltages and bearing currents in rotating machines. In: IEEE Industry Applications Society Annual Meeting Portland (USA), pp 1–8

    Google Scholar 

  7. Hanigovszki N, Landkildehus J, Blaabjerg F (2007pp) Output filters for ac adjustable speed drives. In: Proc. IEEE APEC, pp 236–242

    Google Scholar 

  8. He J, Sizov GY, Zhang P, Demerdash NAO (2011) A review of mitigation methods for overvoltage in long-cable-fed PWM AC drives. In: Proc. Record Energy Convers. Congr. Expo, pp 2160–2166

    Google Scholar 

  9. Strom J‑P (2009) Active du/dt filtering for variable-speed AC drives. PhD Diss., Lappeenranta University of Technology Lappeenranta

  10. Korhonen J (2012) Active inverter output filtering. PhD Diss., Lappeenranta University of Technology Lappeenranta

  11. Tyster J (2014) Power semiconductor nonlinearities in the active du/dt output filtering. PhD Diss., Lappeenranta University of Technology Lappeenranta

  12. Zhou W, Diab M, Yuan X, Wei C (2022) Mitigation of motor overvoltage in SiC-based drives using soft-switching voltage slew-rate (dv/dt) profiling. IEEE Trans Power Electron 37(8):9612–9628

    Article  Google Scholar 

  13. Tyster J, Strom J‑P, Korhonen J, Silventoinen P (2011) Efficiency measurements on active du/dt output filtering. In: Proceedings of the 2011-14th European Conference on Power Electronics and Applications

    Google Scholar 

  14. Zhao S, Zhao X, Wei Y, Zhao Y, Mantooth HA (2020) A review on switching slew rate control for silicon carbide devices using active gate drivers. IEEE J Emerg Sel Topics Power Electron 9(4):4096–4114

    Article  Google Scholar 

  15. Oswald N, Anthony P, McNeill N, Stark BH (2014) An experimental investigation of the tradeoff between switching losses and EMI generation withhard-switched all-Si Si-SiC and all-SiC device combinations. IEEE Trans Power Electron 29(5):2393–2407

    Article  Google Scholar 

  16. Mishra P, Maheshwari R (2020) Design analysis and impacts of sinusoidal LC filter on pulse width modulated inverter fed-induction motor drive. IEEE Trans Ind Electron 67(4):2678–2688

    Article  Google Scholar 

  17. Vadstrup C, Wang X, Blaabjerg F (2014) LC filter design for wide band gap device based adjustable speed drives. In: Power Electronics and Application Conference and Exposition (PEAC) 2014 International, pp 1291–1296

    Chapter  Google Scholar 

  18. Swamy MM, Kang JK, Shirabe K (2015) Power loss system efficiency and leakage current comparison between si IGBT VFD and siC FET VFD with various filtering options. IEEE Trans Ind Appl 51(5):3858–3866

    Article  Google Scholar 

  19. Haider M, Guacci M, Bortis D, Kolar JW, Ono Y (2020) Analysis and evaluation of active/hybrid/passive dv/dt-filter concepts for next generation SiC-based variable speed drive inverter systems. In: IEEE Energy Conversion Congress and Exposition, Detroit, MI, USA, October 11–15, 2020

    Google Scholar 

  20. Chipman RA (1968) Theory and problems on transmission lines. Shaum’s outline series. McGraw-Hill, New York

    Google Scholar 

  21. Boulharts H, Fehringer R (2019) Method of controlling a converter connected to an electric machine (U.S. Patent 10,476,355 B2 filed Feb. 4, 2019)

    Google Scholar 

  22. Diab MS, Yuan X (2020) A quasi-three-level PWM scheme to combat motor overvoltage in SiC-based single-phase drives. IEEE Trans Power Electron 35(12):12639–12645

    Article  Google Scholar 

  23. Jeong S‑G, Park M‑H (1991) The analysis and compensation of dead-time effects in PWM inverters. IEEE Trans Ind Electron 38(2):108–114

    Article  Google Scholar 

  24. Baliga BJ (2008) Fundamentals of power semiconductor devices. Springer, Boston (Chapter 6)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hocine Boulharts.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boulharts, H., Fehringer, R. & Lechat, D. Active dv/dt filter with SiC MOSFET—interlock-delay effect on the overvoltage at motor terminals. Elektrotech. Inftech. 140, 66–81 (2023). https://doi.org/10.1007/s00502-022-01118-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00502-022-01118-w

Keywords

Schlüsselwörter

Navigation