Skip to main content
Log in

A testbed-based approach for the resilience assessment of multi-microgrids

  • CIGRE 2022
  • Published:
e & i Elektrotechnik und Informationstechnik Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Notes

  1. Documented at https://dvc.org/ (Last accessed at 2022/01/13)

References

  1. Marnay C, Abbey C, Joos G et al (2015) Microgrids 1—engineering, economics, & experience—capabilities, benefits, business opportunities, and examples

    Google Scholar 

  2. Hatziargyriou N (ed) (2014) Microgrids: architectures and control. John Wiley & Sons, United Kingdom

    Google Scholar 

  3. Sen S, Kumar V (2018) Microgrid control: a comprehensive survey. Annu Rev Control 45:118–151

    Article  MathSciNet  Google Scholar 

  4. Xu Z, Yang P, Zheng C, Zhang Y, Peng J, Zeng Z (2018) Analysis on the organization and development of multi-microgrids. Renew Sustain Energy Rev 81:2204–2216

    Article  Google Scholar 

  5. Shirzadi S, Nair N‑KC (2018) Power system resilience through microgrids: A comprehensive review. In: 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)

    Google Scholar 

  6. Spiegel MH, Veith E, Strasser TI (2020) The spectrum of proactive, resilient multi-microgrid scheduling: a systematic literature review. Energies 13:4543

    Article  Google Scholar 

  7. Farag HE, Abdelaziz MMA, El-Saadany EF (2013) Voltage and reactive power impacts on successful operation of islanded microgrids. IEEE Trans Power Syst 28:1716–1727

    Article  Google Scholar 

  8. Hossain E, Kabalci E, Bayindir R, Perez R (2014) Microgrid testbeds around the world: state of art. Energy Convers Manag 86:132–153

    Article  Google Scholar 

  9. Spiegel MH (2019) Poster abstract: towards advanced resiliency-oriented multi-microgrid scheduling. Abstracts from the 8th DACH+ Conference on Energy Informatics. Energy informatics, vol 2

    Google Scholar 

  10. Spiegel MH, Strasser TI (2022) Assessing the Value of Proactive Microgrid Scheduling. IEEE Access 10:51062–51078

    Google Scholar 

  11. Spiegel MH, Strasser TI (2020) Experiences with meteorological models for asset scheduling in local energy communities and microgrids. In: CIGRE south east European regional council conference 2020

    Google Scholar 

  12. Conradsen K, Nielsen LB, Prahm LP (1984) Review of Weibull statistics for estimation of wind speed distributions. J Clim Appl Meteorol 23:1173–1183

    Article  Google Scholar 

  13. Rocklin M (2015) Dask: parallel computation with blocked algorithms and task scheduling. In: Proceedings of the 14th python in science conference

    Google Scholar 

  14. Fünfgeld C, Tiedemann R (2000) Anwendung der Repräsentativen VDEW-Lastprofile step-by-step

    Google Scholar 

  15. Virtanen P, Gommers R, Oliphant TE et al (2020) SciPy 1.0: fundamental algorithms for scientific computing in python. Nat Methods 17:261–272

    Article  Google Scholar 

  16. Hamill TM, Bates GT, Whitaker JS, Murray DR, Fiorino M, Galarneau TJ Jr, Zhu Y, Lapenta W (2013) NOAA’s second-generation global medium-range ensemble reforecast dataset. Bull Am Meteorol Soc 94:1553–1565

    Article  Google Scholar 

  17. Stoffel T, Andreas A (1981) NREL Solar Radiation Research Laboratory (SRRL): Baseline Measurement System (BMS); golden, colorado (data)

    Google Scholar 

  18. Jager D, Andreas A (1996) NREL national wind technology center (NWTC): M2 Tower; Boulder, Colorado (Data)

    Google Scholar 

  19. Spalthoff C, Sarajlić D, Kittl C, Drauz S, Kneiske T, Rehtanz C, Braun M (2019) SimBench: open source time series of power load, storage and generation for the simulation of electrical distribution grids. In: Internationaler ETG-Kongress

    Google Scholar 

  20. Day-Ahead Auction, EPEX SPOT SE, 2019

  21. Pröstl Andrén F, Strasser T, Kastner W (2017) Engineering smart grids: applying model-driven development from use case design to deployment. Energies 10:374. https://doi.org/10.3390/en10030374

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael H. Spiegel.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

T.I. Strasser is an OVE and IEEE member.

Paper submitted for the CIGRE Session 2022, SC-C6, August 28–September 2, 2022

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spiegel, M.H., Strasser, T.I. A testbed-based approach for the resilience assessment of multi-microgrids. Elektrotech. Inftech. 140, 168–175 (2023). https://doi.org/10.1007/s00502-022-01093-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00502-022-01093-2

Navigation