Skip to main content
Log in

Experimental investigation on induction motors inter-turns short-circuit and broken rotor bars faults diagnosis through the discrete wavelet transform

Experimentelle Untersuchung von Windungsschlüssen und Stabbrüchen an Asynchronmaschinen mittels diskreter Wavelet-Transformation

  • Originalarbeit
  • Published:
e & i Elektrotechnik und Informationstechnik Aims and scope Submit manuscript

Abstract

This paper deals with the problem of fault detection in induction motors using the discrete wavelet transform (DWT) method. The DWT is a mathematical method used to extract different frequency components from a given signal. It is based on the decomposition of the processed signals into wavelet approximation and detail coefficients. In order to detect inter-turns short-circuit (ITSC) and broken rotor bars (BRBs) faults, the DWT is applied on two different signals: the current envelope and the current Park’s vector modulus. This study is performed using experimental tests carried-out on a 3 kW squirrel cage induction motor. The energy evaluation of known bandwidth details allows defining a fault severity factor (FSF). This FSF is used to show which signals, wavelet type and wavelet order are more sensitive for the fault detection task.

Zusammenfassung

Diese Arbeit befasst sich mit der Fehlererkennung in Asynchronmaschinen mittels diskreter Wavelet-Transformation (DWT). Die DWT ist eine mathematische Methode, um verschiedene Frequenzkomponenten aus einem gegebenen Signal zu extrahieren. Sie basiert auf der Zerlegung des verarbeiteten Signals in Tieffrequenzanteile und Hochfrequenzanteile. Um Windungsschlüsse und Rotorstabbrüche zu erkennen, wird die DWT auf zwei unterschiedliche Signale angewendet: die Hüllkurve des Stroms und den Betrag des Stromvektors nach der Park-Transformation. Die Untersuchungen wurden basierend auf Messungen an einer 3-kW-Asynchronmaschine mit Kurzschlussläufer durchgeführt. Die Auswertung der Leistungsanteile über den Frequenzbereich erlaubt die Definition eines Fehlerlevel-Faktors. Dieser Faktor kann verwendet werden, um für die Fehlererkennung geeignete Signale, Wavelet-Typen und Wavelet-Ordnungszahlen zu ermitteln.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

References

  1. Penman, J., Sedding, H. G., Lloyd, B. A., Fink, W. T. (1994): Detection and location of interturn short circuits in the stator windings of operating motors. IEEE Trans. Energy Convers., 9(4), 652–658.

    Article  Google Scholar 

  2. Tallam, R. M., Habetler, T. G., Harley, R. G., Gritter, D. J., Burton, B. H. (2000): Neural network based on-line stator winding turn fault detection for induction motors. In Proc. IEEE-IAS Conf. (pp. 375–380).

    Google Scholar 

  3. Kallesøe, C. S., Zamanabadi, R. I., Vadstrup, P., Rasmussen, H. (2007): Observer-based estimation of stator-winding faults in delta-connected induction motors: a linear matrix inequality approach. IEEE Trans. Ind. Appl., 43(4), 1022–1031.

    Article  Google Scholar 

  4. Cardoso, A. J. M., Cruz, S. M. A., Fonseca, D. S. B. (1999): Inter-turn stator winding fault diagnosis in three-phase induction motors, by Park’s vector approach. IEEE Trans. Energy Convers., 14, 595–598.

    Article  Google Scholar 

  5. Cruz, S. M. A., Cardoso, A. J. M. (2001): Stator winding fault diagnosis in three-phase synchronous and asynchronous motors, by the extended Park’s vector approach. IEEE Trans. Ind. Appl., 37, 1227–1233.

    Article  Google Scholar 

  6. Cruz, S. M. A., Cardoso, A. J. M. (2005): Multiple reference frames theory: a new method for the diagnosis of stator faults in three-phase induction motors. IEEE Trans. Energy Convers., 20(3), 611–617.

    Article  Google Scholar 

  7. Briz, F., Degner, M. W., García, P., Diez, A. B. (2008): High-frequency carrier-signal voltage selection for stator winding fault diagnosis in inverter-fed AC machines. IEEE Trans. Ind. Electron., 55(12), 1109–1117.

    Article  Google Scholar 

  8. Bachir, S., Tnani, S., Trigeassou, J. C., Champenois, G. (2006): Diagnosis by parameter estimation of stator and rotor faults occurring in induction machines. IEEE Trans. Ind. Electron., 53(3), 345–352.

    Article  Google Scholar 

  9. Ferdjouni, A., Salhi, H., Djemai, M., Busawon, K. (2006): Observer-based detection of inter-turn short circuit in three phase induction motor stator windings. Mediterr. J. Meas. Control, 2(3), 132–143.

    Google Scholar 

  10. Kliman, G. B., Stein, J. (1992): Methods of motor currents signature analysis. Electr. Mach. Power Syst., 20(5), 463–474.

    Article  Google Scholar 

  11. Thomson, W. T., Fenger, M. (2001): Current signature analysis to detect induction motors faults. IEEE Ind. Appl. Mag., 7(4), 26–34.

    Article  Google Scholar 

  12. Maouche, Y., Oumaamar, M. K., Boucherma, M., Khezzar, A. (2014): Instantaneous power spectrum analysis for broken bar fault detection in inverter-fed six-phase squirrel cage induction motor. Int. J. Electr. Power Energy Syst., 62(4), 110–117.

    Article  Google Scholar 

  13. Magdaleno, J. R., Barreto, H. P., Cortes, J. R., Vega, I. C. (2017): Hilbert spectrum analysis of induction motors for the detection of incipient broken rotor bars. Measurement, 109(3), 247–255.

    Article  Google Scholar 

  14. Cruz, S. M. A., Cardoso, A. J. M. (2000): Rotor cage fault diagnosis in three-phase induction motors by the extended Park’s vector approach. Electr. Mach. Power Syst., 28(4), 289–299.

    Article  Google Scholar 

  15. Hsu, J. S. (1995): Monitoring of defects in induction motors through air-gap torque observation. IEEE Trans. Ind. Appl., 31(5), 1016–1021.

    Article  Google Scholar 

  16. Eltabach, M., Charara, A. (2007): Comparative investigation of electric signal analyses methods for mechanical fault detection in induction motors. Electr. Power Compon. Syst., 35(10), 1161–1180.

    Article  Google Scholar 

  17. Liu, Z., Yin, X., Zhang, Z., Chen, D. (2004): Online rotor mixed fault diagnosis way based on spectrum analysis of instantaneous power in squirrel cage induction motors. IEEE Trans. Energy Convers., 19(3), 485–490.

    Article  Google Scholar 

  18. Drif, M., Cardoso, A. J. M. (2008): The use of the instantaneous-reactive-power signature analysis for rotor-cage-fault diagnostics in three-phase induction motors. IEEE Trans. Ind. Electron., 56(11), 4606–4614.

    Article  Google Scholar 

  19. Wang, Y., He, Z., Zi, Y. (2010): Enhancement of signal denoising and multiple fault signatures detecting in rotating machinery using dual-tree complex wavelet transform. Mech. Syst. Signal Process., 24(1), 119–137.

    Article  Google Scholar 

  20. Yahia, K., Cardoso, A. J. M., Ghoggal, A., Zouzou, S. E. (2014): Induction motors airgap-eccentricity detection through the discrete wavelet transform of the apparent power signal under non-stationary operating conditions. ISA Trans., 53(2), 603–611.

    Article  Google Scholar 

  21. Mallat, S. G. (1998): A wavelet tour of signal processing. 2nd ed. San Diego: Academic Press.

    MATH  Google Scholar 

  22. Malat, S. G. (1989): A Theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell., 2(7), 674–693.

    Article  Google Scholar 

  23. Daviu, J. A., Rodriguez, P. J., Guasp, M. R., Sanchez, M. P., Arkkio, A. (2009): Detection of combined faults in induction machines with stator parallel branches through the DWT of the startup current. Mech. Syst. Signal Process., 23, 2336–2351.

    Article  Google Scholar 

  24. Awadallah, M. A., Morcos, M. M., Gopalakrishnan, S., Nehl, T. W. (2006): Detection of stator short circuits in VSI-fed brushless DC motors using wavelet transform. IEEE Trans. Energy Convers., 21(1) 1–8.

    Article  Google Scholar 

  25. Kia, S. H., Henao, H., Capolino, G. A. (2009): Diagnosis of broken-bar fault in induction machines using discrete wavelet transform without slip estimation. IEEE Trans. Ind. Appl., 45(4), 107–121.

    Google Scholar 

  26. Yahia, K., Cardoso, A. J. M., Ghoggal, A., Zouzou, S. (2014): Induction motors broken rotor bars diagnosis through the discrete wavelet transform of the instantaneous reactive power signal under time varying load conditions. Electr. Power Compon. Syst., 42(74), 682–692.

    Article  Google Scholar 

  27. Sahraoui, M., Ghoggal, A., Zouzou, S. E., Aboubou, A., Razik, H. (2006): Modelling and detection of inter-turn short circuits in stator windings of induction motor. In 32nd Annual Conference on IEEE Indus. Electron., IECON, Paris, France, 6–10 Nov. 2006 (pp. 4981–4986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fateh Benchabane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benchabane, F., Guettaf, A., Yahia, K. et al. Experimental investigation on induction motors inter-turns short-circuit and broken rotor bars faults diagnosis through the discrete wavelet transform. Elektrotech. Inftech. 135, 187–194 (2018). https://doi.org/10.1007/s00502-018-0607-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00502-018-0607-6

Keywords

Schlüsselwörter

Navigation