Advertisement

e & i Elektrotechnik und Informationstechnik

, Volume 135, Issue 2, pp 177–186 | Cite as

Design of a synchronous reluctance rotor for the stator of an 11 kW induction machine

  • Sascha Neusüs
  • Andreas Binder
Originalarbeit
  • 119 Downloads

Abstract

This paper first describes a general method for the design of a synchronous reluctance rotor, which uses the field lines in an anisotropic rotor to shape the flux barriers and combines this with known design rules from the literature. This straightforward method is now used to design a rotor for the stator of a three-phase, four-pole, 11 kW standard induction machine. In some electromagnetic studies the influence of the essential rotor parameters (number of flux barriers, ratio of the magnetically non-conductive material in the rotor and the used method for the radial width ratios of adjacent barriers) is analyzed by means of finite element simulations in order to find a suitable rotor topology. In addition, the dimensioning of the mechanical ribs is discussed to manufacture a prototype rotor, which is then inserted into the stator of the cage induction machine. Finally, both the reluctance rotor and the squirrel cage rotor of the induction machine are used to present measurement results for the heating at the rated point and the efficiency at normalized operating points, so that both types of machines can be compared.

Keywords

synchronous reluctance machine rotor design efficiency map machine comparison 

Auslegung eines synchronen Reluktanzrotors für den Stator einer 11-kW-Asynchronmaschine

Zusammenfassung

Dieser Beitrag beschreibt zunächst ein allgemeines Verfahren zur Auslegung eines synchronen Reluktanzläufers, welches zur Formgebung den Verlauf der Feldlinien in einem anisotropen Rotor nutzt und dies mit bekannten Auslegungsregeln aus der Literatur kombiniert. Diese direkte Methode wird nun dazu genutzt, einen Rotor für den Stator einer dreiphasigen, vierpoligen 11 kW Normalsynchronmaschine zu gestalten. In einigen elektromagnetischen Studien wird der Einfluss der wesentlichen Rotor-Parameter (Anzahl der Flussbarrieren, Anteil des nichtleitfähigen Materials im Rotor und die Methode zur Bestimmung der Breitenverhältnisse der benachbarten Barrieren) mit Hilfe von Finite-Elemente-Simulationen analysiert, um eine geeignete Rotortopologie zu finden. In Ergänzung dazu wird auf die Dimensionierung der mechanisch bedingten Stege eingegangen, um einen Prototyp-Rotor fertigen zu können, der anschließend in den Stator der Käfigläufer-Asynchronmaschine eingesetzt wird. Abschließend werden sowohl für den Reluktanzläufer als auch den Käfigläufer der Asynchronmaschine Messergebnisse für die Erwärmung im Bemessungspunkt und den Wirkungsgrad in normierten Betriebspunkten vorgestellt, sodass beide Maschinentypen gegenübergestellt werden können.

Schlüsselwörter

synchrone Reluktanzmaschine Rotorauslegung Wirkungsgradkennfeld Maschinenvergleich 

References

  1. 1.
    ZVEI (2014): Energieeffizienz mit elektrischen Antrieben. Frankfurt/Main, Germany: ZVEI – Zentralverband Elektrotechnik und Elektronikindustrie e.V. Google Scholar
  2. 2.
    Moghaddam, R. R. (2011): Synchronous reluctance machine (SynRM) in variable speed drives (VSD) applications. PhD. Thesis, KTH Royal Institute of Technology, Stockholm, Sweden. Google Scholar
  3. 3.
    Liu, C. T., Chung, H. Y., Lin, S. Y. (2017): On the electromagnetic steel selections and performance impact assessments of synchronous reluctance motors. IEEE Trans. Ind. Appl., 53(3), 2569–2577.  https://doi.org/10.1109/TIA.2017.2665348. CrossRefGoogle Scholar
  4. 4.
    Palmieri, M., Perta, M., Cupertino, F., Pellegrino, G. (2014): Effect of the numbers of slots and barriers on the optimal design of synchronous reluctance machines. In 2014 international conference on optimization of electrical and electronic equipment (OPTIM), Brasov, Romania, 22–24 May 2014. (pp. 260–267).  https://doi.org/10.1109/optim.2014.6850947. CrossRefGoogle Scholar
  5. 5.
    Yammine, S., Henaux, C., Fadel, M., Desharnais, S., Calégari, L. (2014): Synchronous reluctance machine flux barrier design based on the flux line patterns in a solid rotor. In 2014 international conference on electrical machines (ICEM), Berlin, Germany, 2–5 Sept. 2014. (pp. 297–302).  https://doi.org/10.1109/icelmach.2014.6960196. CrossRefGoogle Scholar
  6. 6.
    Neusüs, S., Binder, A. (2017): Shaping and dimensioning of the flux barriers in synchronous reluctance machines. In 2017 international conference on optimization of electrical and electronic equipment (OPTIM) 2017 intl. Aegean conference on electrical machines and power electronics (ACEMP), Brasov, Romania, 25–27 Apr. 2017 (pp. 509–516).  https://doi.org/10.1109/OPTIM.2017.7975019. Google Scholar
  7. 7.
    Vagati, A., Pastorelli, M., Franceschini, G., Petrache, S. C. (1998): Design of low-torque-ripple synchronous reluctance motor. IEEE Trans. Ind. Appl., 34(4), 758–765.  https://doi.org/10.1109/28.703969. CrossRefGoogle Scholar
  8. 8.
    Moghaddam, R. R., Gyllensten, F. (2014): Novel high-performance SynRM design method: an easy approach for a complicated rotor topology. IEEE Trans. Ind. Electron., 61(9), 5058–5065.  https://doi.org/10.1109/TIE.2013.2271601. CrossRefGoogle Scholar
  9. 9.
    Bianchi, N., Mahmoud, H., Bolognani, S. (2016): Fast synthesis of permanent magnet assisted synchronous reluctance motors. IET Electric Power Appl., 10(5), 312–318.  https://doi.org/10.1049/iet-epa.2015.0240. CrossRefGoogle Scholar
  10. 10.
    Boldea, I. (1996): Reluctance synchronous machines and drives (Vol. 38). Oxford, UK: Oxford University Press. Google Scholar
  11. 11.
    Vagati, A., Franceschini, G., Marongiu, I., Troglia, G. P. (1992): Design criteria of high performance synchronous reluctance motors. In Conference record of the 1992 IEEE industry applications society annual meeting, Houston, Texas, USA, 4–9 Oct. 1992. (Vol. 61, pp. 66–73).  https://doi.org/10.1109/ias.1992.244463. CrossRefGoogle Scholar
  12. 12.
    Taghavi, S., Pillay, P. (2015): A mechanically robust rotor with transverse-laminations for a wide speed range synchronous reluctance traction motor. IEEE Trans. Ind. Appl., 50(6), 4404–4414.  https://doi.org/10.1109/tia.2015.2445819. CrossRefGoogle Scholar
  13. 13.
    Binder, A. (2012): Elektrische Maschinen und Antriebe. VDI-Buch. Berlin, Heidelberg, Germany: Springer.  https://doi.org/10.1007/978-3-540-71850-5. CrossRefGoogle Scholar
  14. 14.
    Vagati, A., Pastorelli, M., Scapino, F., Franceschini, G. (1998): Cross-saturation in synchronous reluctance motors of the transverse-laminated type. In Conference record of 1998 IEEE industry applications conference. Thirty-third IAS annual meeting. St. Louis, Missouri, USA, 12–15 Oct. 1998 (pp. 127–135).  https://doi.org/10.1109/IAS.1998.732271. Google Scholar
  15. 15.
    Matsuo, T., Lipo, T. A. (1994): Rotor design optimization of synchronous reluctance machine. IEEE Trans. Energy Convers., 9(2), 359–365.  https://doi.org/10.1109/60.300136. CrossRefGoogle Scholar
  16. 16.
    Cogent (2008): Typical data for SURA® M530-50A. Sweden: Cogent Surahammars Bruk AB. Google Scholar
  17. 17.
    Binder, A. (1989): Untersuchung zur magnetischen Kopplung von Längs- und Querachse durch Sättigung am Beispiel der Reluktanzmaschine. Electrical Eng. (Arch. Elektrotech.), 72(4), 277–282.  https://doi.org/10.1007/BF0157385. MathSciNetGoogle Scholar
  18. 18.
    IEC (2017): IEC 60034 part 2–3: specific test methods for determining losses and efficiency of converter-fed AC motors. Berlin, Germany: VDE Verlag GmbH. Google Scholar
  19. 19.
    Colotti, A., Stadtler, K. S. (2014): Magnetic cross-coupling effects on the performance of the synchronous reluctance machine. In 16th European conference on power electronics and applications (EPE), Lappeenranta, Finland, 26–28 Aug. 2014 (pp. 417–426).  https://doi.org/10.1109/EPE.2014.6910730. Google Scholar
  20. 20.
    ABB (2016): Low voltage IE4 synchronous reluctance motors. Västerås, Sweden: ABB Motors and Generators. Google Scholar
  21. 21.
    Siemens (2016): Niederspannungsmotoren SIMOTICS. Nürnberg, Germany: Siemens AG Process Industries and Drives. Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für Elektrische EnergiewandlungTechnische Universität DarmstadtDarmstadtDeutschland

Personalised recommendations