Comparative study of digital control schemes for interleaved multi-phase buck converters

Vergleichsstudie digitaler Regelkonzepte für mehrphasige Abwärtswandler

Abstract

The increasing amount of required functionality in today’s electronic devices demands for more advanced power supply concepts. A possible solution to increase the performance and efficiency of DC-DC converters is to use multi-phase topologies. These converters employ multiple parallel power stages, hence sharing the total load current. In order to provide a regulated output voltage and equal sharing of the total current, a control loop is an essential part of such a converter. This paper presents three digital control schemes for multi-phase buck converters, namely, a linear voltage mode controller, a combined Ton/Toff control and a non-linear sliding mode control (SMC) law. Experimental results of a two-phase buck converter highlight the effectiveness of more sophisticated controllers and the benefits of multi-phase over single-phase converters.

Zusammenfassung

Die steigende Anzahl an benötigten Funktionen in heutigen elektronischen Geräten verlangt nach fortgeschritteneren Energieversorgungskonzepten. Eine Möglichkeit, die Performanz und Effizienz von Gleichspannungswandlern zu verbessern, ist der Einsatz von mehrphasigen Topologien. Durch die Verwendung von mehreren parallelen Leistungsstufen wird der von der Last benötigte Strom aufgeteilt. Um sowohl eine geregelte Ausgangsspannung als auch eine gleichmäßige Verteilung des benötigten Stroms zu ermöglichen, ist es wichtig, den Wandler geregelt zu betreiben. In dieser Arbeit werden drei digitale Regelkonzepte für mehrphasige Abwärtswandler vorgestellt: ein linearer Regler basierend auf der Ausgangsspannung, eine kombinierte Ton/Toff-Regelung sowie ein nichtlinearer Sliding Mode-Regler. Die Effizienz von fortgeschrittenen Regelkonzepten sowie die Vorteile von mehrphasigen Systemen werden anhand von Messergebnissen eines zweiphasigen Abwärtsreglers aufgezeigt.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.

References

  1. 1.

    Zhou, X., Wong, P. L., Xu, P., Lee, F. C., Huang, A. Q. (2000): IEEE Trans. Power Electron., 15(6), 1172. https://doi.org/10.1109/63.892832.

    Article  Google Scholar 

  2. 2.

    Pascual, A., Eirea, G., Ferreira, E. (2009): In 2009 IEEE energy conversion congress and exposition (ECCE 2009), San Jose, CA, USA (pp. 1112–1117). https://doi.org/10.1109/ECCE.2009.5316525.

    Chapter  Google Scholar 

  3. 3.

    Michal, V. (2016): IET Power Electron., 9(11), 2223. https://doi.org/10.1049/iet-pel.2015.0814.

    Article  Google Scholar 

  4. 4.

    Kanzian, M., Agostinelli, M., Huemer, M. (2016): In 2016 austrochip workshop on microelectronics (Austrochip 2016), Villach, Austria (pp. 7–12). https://doi.org/10.1109/Austrochip.2016.013.

    Chapter  Google Scholar 

  5. 5.

    Zhang, X., Corradini, L., Maksimovic, D. (2009): In 2009 IEEE applied power electronics conference and exposition (APEC 2009), Washington, DC, USA (pp. 70–76). https://doi.org/10.1109/APEC.2009.4802635.

    Google Scholar 

  6. 6.

    Erickson, R., Maksimović, D. (2007): Fundamentals of power electronics. New York: Springer.

    Google Scholar 

  7. 7.

    Corradini, L., Maksimović, D., Mattavelli, P., Zane, R. (2015): Digital control of high-frequency switched-mode power converters. Piscataway: Wiley.

    Book  Google Scholar 

  8. 8.

    Priewasser, R., Agostinelli, M., Unterrieder, C., Marsili, S., Huemer, M. (2014): IEEE Trans. Power Electron., 29(1), 287. https://doi.org/10.1109/TPEL.2013.2248751.

    Article  Google Scholar 

  9. 9.

    Corradini, L., Costabeber, A., Mattavelli, P., Saggini, S. (2009): IEEE Trans. Power Electron., 24(10), 2235. https://doi.org/10.1109/TPEL.2009.2022397.

    Article  Google Scholar 

  10. 10.

    Agostinelli, M., Priewasser, R., Marsili, S., Huemer, M. (2011): In 2011 IEEE international symposium of circuits and systems (ISCAS 2011) (pp. 1604–1607). Brazil: Rio De Janeiro. https://doi.org/10.1109/ISCAS.2011.5937885.

    Chapter  Google Scholar 

  11. 11.

    Kapat, S., Krein, P. T. (2012): IEEE Trans. Power Electron., 27(3), 1444. https://doi.org/10.1109/TPEL.2011.2163419.

    Article  Google Scholar 

  12. 12.

    Ling, R., Maksimovic, D., Leyva, R. (2016): IEEE Trans. Power Electron., 31(3), 2539. https://doi.org/10.1109/TPEL.2015.2431193.

    Article  Google Scholar 

  13. 13.

    Sun, J., Qiu, Y., Xu, M., Lee, F. C. (2006): In 2006 IEEE applied power electronics conference and exposition (APEC 2006), Dallas, TX, USA (pp. 31–37). https://doi.org/10.1109/APEC.2006.1620512.

    Google Scholar 

  14. 14.

    Kelly, A. (2009): IEEE Trans. Power Electron., 24(1), 212. https://doi.org/10.1109/TPEL.2008.2006752.

    Article  Google Scholar 

  15. 15.

    Repecho, V., Biel, D., Ramos, R., Vega, P. G. (2018): IEEE Trans. Power Electron., 33(1), 676. https://doi.org/10.1109/TPEL.2017.2662327.

    Article  Google Scholar 

  16. 16.

    Siew-Chong, T., Yuk-Ming, L., Kong, T. C. (2011): Sliding mode control of switching power converters. Boca Raton: CRC Press.

    Google Scholar 

  17. 17.

    Repecho, V., Biel, D., Fossas, E. (2014): In 2014 13th international workshop on variable structure systems (VSS 2014), Nantes, France (pp. 1–6). https://doi.org/10.1109/VSS.2014.6881146.

    Google Scholar 

  18. 18.

    Repecho, V., Biel, D., Olm, J. M., Colet, E. F. (2017): IEEE Trans. Power Electron., 32(2), 1557. https://doi.org/10.1109/TPEL.2016.2546382.

    Article  Google Scholar 

  19. 19.

    Agostinelli, M., Priewasser, R., Marsili, S., Huemer, M. (2011): In Joint INDS’11 & ISTET’11, Klagenfurt, Austria (pp. 1–5). https://doi.org/10.1109/INDS.2011.6024831.

    Google Scholar 

  20. 20.

    Utkin, V. (1992): Sliding modes in control and optimization. Heidelberg: Springer.

    Book  MATH  Google Scholar 

  21. 21.

    Sarpturk, S., Istefanopulos, Y., Kaynak, O. (1987): IEEE Trans. Autom. Control, 32(10), 930. https://doi.org/10.1109/TAC.1987.1104468.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marc Kanzian.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kanzian, M., Gietler, H., Agostinelli, M. et al. Comparative study of digital control schemes for interleaved multi-phase buck converters. Elektrotech. Inftech. 135, 54–60 (2018). https://doi.org/10.1007/s00502-017-0574-3

Download citation

Keywords

  • DC–DC converter
  • multi-phase DC–DC converter
  • digital control
  • nonlinear control

Schlüsselwörter

  • DC–DC-Konverter
  • mehrphasige DC–DC-Konverter
  • digitale Regelung
  • nichtlineare Regelung