Skip to main content

Virtual Energy Information Network: a resilience perspective

Virtualisiertes Energieinformationsnetz: Betrachtung der Widerstandsfähigkeit

Abstract

Increasing demand in energy consumption, missed modernisations, and the increasing difficulties in predicting power production due to volatile renewable energy sources (e.g., based on wind or sun) impose major challenges to the power grid. Power supply and power demand are closely interconnected with the need to maintain the power grid in a stable state with a sufficient quality of power. This requires energy-relevant information to be exchanged through the so called Energy Information Network. Communication, however, is challenging within the Energy Information Network due to privacy, security, resiliency, and quality-of-service requirements. Particularly, the resilience of communication within the Energy Information Network needs to be considered to maintain the power grid in a stable and controlled state. This paper suggests a Virtualised Energy Information Network (VEIN), where the Energy Information Network is divided into multiple virtual networks that run over a common substrate network. Furthermore, this paper discusses benefits of this approach in terms of privacy, security, and resilience and points out open research questions.

Zusammenfassung

Steigender Energieverbrauch, nicht durchgeführte Modernisierungen und steigende Komplexität in der Vorhersage der Produktion von erneuerbaren Energien (durch Sonne oder Wind) stellen große Herausforderungen für das Stromnetz dar. Energienachfrage und Energieversorgung sind stark verbunden mit der Notwendigkeit, das Stromnetz in einem stabilen Zustand mit hoher Stromqualität zu halten. Um das zu erreichen, müssen energiebezogene Informationen im so genannten Energieinformationsnetz ausgetauscht werden. Die Kommunikation im Energieinformationsnetz ist allerdings großen Herausforderungen unterworfen, wie etwa Anforderungen an Privatheit, Sicherheit, Widerstandsfähigkeit und Dienstgüte. Speziell die Widerstandsfähigkeit des Energieinformationsnetzes muss gewährleistet sein, um das Stromnetz in einem stabilen und kontrollierten Zustand zu halten. Dieser Beitrag schlägt ein Virtualisiertes EnergieInformationsNetz (VEIN) vor, in dem das Energieinformationsnetz in mehrere virtuelle Netze geteilt wird, die über ein gemeinsames Substratnetz laufen. Die Vorteile dieses Ansatzes werden in Bezug auf Privatheit, Sicherheit und Widerstandsfähigkeit diskutiert, und offene Forschungsfragen werden aufgezeigt.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.

Notes

  1. “The term ’Smart Grid’ refers to a modernization of the electricity delivery system so it monitors, protects and automatically optimizes the operation of its interconnected elements—from the central and distributed generator through the high-voltage transmission network and the distribution system, to industrial users and building automation systems, to energy storage installations and to end-use consumers and their thermostats, electric vehicles, appliances and other household devices. The Smart Grid will be characterized by a two-way flow of electricity and information to create an automated, widely distributed energy delivery network. It incorporates into the grid the benefits of distributed computing and communications to deliver real-time information and enable the near-instantaneous balance of supply and demand at the device level.” [1]

  2. “An electrical grid is an interconnected network for delivering electricity from suppliers to consumers. It consists of generating stations that produce electrical power, high-voltage transmission lines that carry power from distant sources to demand centers, and distribution lines that connect individual customers.” [3]

References

  1. Dollen, D. V. (2009): Report to NIST on the smart grid interoperability standards roadmap. Tech. rep., National Institute of Standards and Technology (NIST).

  2. Battaglini, A., Lilliestam, J., Bals, C., Haas, A. (2008): The supersmart grid. In European climate forum, Potsdam Institute for Climate Impact Research.

    Google Scholar 

  3. Kaplan, S. M. (2009): Electric power transmission: background and policy issues. Tech. rep., Congressional Research Service.

  4. Kennedy, B. (2000): Power quality primer. New York: McGraw-Hill.

    Google Scholar 

  5. E. P. R. Institute (2011): Estimating the cost and benefits of the smart grid. http://my.epri.com/portal/server.pt?Abstract_id=000000000001022519.

  6. Falliere, N., Murchu, L. O., Chien, E. (2011): W32.Stuxnet dossier. Tech. rep., Symantec.

  7. McDaniel, P., McLaughlin, S. (2009): Security and privacy challenges in the smart grid. IEEE Secur. Priv., 7, 75–77.

    Google Scholar 

  8. Yarali, A., Rahman, S. (2012): Smart grid networks: promises and challenges. J. Commun., 7(6), 409–417. http://dblp.uni-trier.de/db/journals/jcm/jcm7.html#YaraliR12.

    Google Scholar 

  9. Chowdhury, N. M. K., Boutaba, R. (2010): A survey of network virtualization. Comput. Netw., 54(5), 862–876. doi:10.1016/j.comnet.2009.10.017.

    MATH  Article  Google Scholar 

  10. Fischer, A., Fessi, A., Carle, G., De Meer, H. (2011): Wide-area virtual machine migration as resilience mechanism. In Proceedings of the international workshop on network resilience: from research to practice (WNR2011) (pp. 72–77). New York: IEEE. doi:10.1109/SRDSW.2011.16.

    Google Scholar 

  11. Omer, M., Nilchiani, R., Mostashari, A. (2009): Measuring the resilience of the global internet infrastructure system. In Systems conference, 2009, 3rd annual (pp. 156–162). New York: IEEE. doi:10.1109/SYSTEMS.2009.4815790.

    Chapter  Google Scholar 

  12. Amin, M. (2008): Challenges in reliability, security, efficiency, and resilience of energy infrastructure: toward smart self-healing electric power grid. In Power and energy society general meeting—conversion and delivery of electrical energy in the 21st century (pp. 1–5). New York: IEEE. doi:10.1109/PES.2008.4596791.

    Chapter  Google Scholar 

  13. Eckert, C. Sicherheit im Smart Grid – Eckpunkte für ein Energieinformationsnetz.

  14. Eckert, C., Krauss, C. Sicherheit im Smart Grid – Sicherheitsarchitekturen für die Domänen Privatkunde und Verteilnetz unter Berücksichtigung der Elektromobilität.

  15. Berl, A., Niedermeier, M., De Meer, H. (2013): Smart grid considerations—energy efficiency vs. security. In A. Hurson (Ed.), Green and sustainable computing: part II. Advances in computers (Vol. 88, pp. 159–198). Amsterdam: Elsevier. doi:10.1016/B978-0-12-407725-6.00004-6.

    Chapter  Google Scholar 

  16. Brown, R. E. (2008): Impact of smart grid on distribution system design. In Power and energy society general meeting—conversion and delivery of electrical energy in the 21st century (pp. 1–4). New York: IEEE.

    Chapter  Google Scholar 

  17. Amin, S. M., Wollenberg, B. F. (2005): Toward a smart grid: power delivery for the 21st century. IEEE Power Energy Mag., 3(5), 34–41.

    Article  Google Scholar 

  18. Farhangi, H. (2010): The path of the smart grid. IEEE Power Energy Mag., 8(1), 18–28.

    MathSciNet  Article  Google Scholar 

  19. En-Bo, J. (2010): Smart meter system design in smart grid advanced metering infrastructure AMI. Tech. rep., Electrical Measurement & Instrumentation.

  20. Quinn, E. L. Smart metering and privacy: existing laws and competing policies, social science research network. http://ssrn.com/paper=1462285.

  21. Cavoukian, A., Polonetsky, J., Wolf, C. (2009): Smart privacy for the smart grid: embedding privacy into the design of electricity conservation. Whitepaper. http://www.futureofprivacy.org.

  22. Metke, A. R., Ekl, R. L. (2010): Smart grid security technology. Tech. rep., Motorola, Inc.

  23. Boyer, W. F., McBride, S. A. (2009): Study of security attributes of smart grid systems—current cyber security issues. Tech. rep., Idaho National Laboratory, Critical Infrastructure Protection/Resilience Center.

  24. Lee, A., Brewer, T. (2009): Smart grid cyber security strategy and requirements. Tech. rep., The Cyber Security Coordination Task Group, Advanced Security Acceleration Project—Smart Grid.

  25. Feamster, N., Gao, L., Rexford, J. (2007): How to lease the internet in your spare time. Comput. Commun. Rev., 37, 61–64.

    Article  Google Scholar 

  26. Rubio-Loyola, J., Astorga, A., Serrat, J., Chai, W. K., Mamatas, L., Galis, A., Clayman, S., Cheniour, A., Lefevre, L., Mornard, O., Fischer, A., Paler, A., De Meer, H. (2010): Platforms and software systems for an autonomic internet. In Proceedings of the IEEE global communications conference (IEEE GLOBECOM 2010).

    Google Scholar 

  27. Davy, S., Fahy, C., Griffin, L., Boudjemil, Z., Berl, A., Fischer, A., de Meer, H., Strassner, J. (2008): Towards a policy-based autonomic virtual network to support differentiated security services. In International conference on telecommunications and multimedia (TEMU 2008), Ierapetra, Crete, Greece.

    Google Scholar 

  28. Sahoo, J., Mohapatra, S., Lath, R. (2010): Virtualization: a survey on concepts, taxonomy and associated security issues. In Second international conference on computer and network technology (ICCNT) (pp. 222–226). doi:10.1109/ICCNT.2010.49.

    Google Scholar 

  29. Marias, G. F., Barros, J., Fiedler, M., Fischer, A., Hauff, H., Herkenhoener, R., Grillo, A., Lentini, A., Lima, L., Lorentzen, C., Mazurczyk, W., de Meer, H., Oliveira, P. F., Polyzos, G. C., Pujol, E., Szczypiorski, K., Vilela, J. P., Vinhoza, T. T. V. (2012): Security and privacy issues for the network of the future. J. Secur. Commun. Netw., 5(9), 987–1005. doi:10.1002/sec.384.

    Article  Google Scholar 

  30. Fischer, A., De Meer, H. (2011): Position paper: secure virtual network embedding. Prax. Inf.verarb. Kommun., 34(4), 190–193. doi:10.1515/piko.2011.040.

    Google Scholar 

Download references

Acknowledgements

The research leading to these results was supported by EC’s FP7 Network of Excellence EINS (grant No. 288021)—in particular JRA7 on resilience of critical infrastructures—and by “Regionale Wettbewerbsfähigkeit und Beschäftigung”, Bayern, 2007–2013 (EFRE) as part of the SECBIT project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Berl.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Berl, A., Niedermeier, M., Fischer, A. et al. Virtual Energy Information Network: a resilience perspective. Elektrotech. Inftech. 130, 121–126 (2013). https://doi.org/10.1007/s00502-013-0142-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00502-013-0142-4

Keywords

  • energy information network
  • network virtualisation
  • resilience

Schlüsselwörter

  • Energieinformationsnetz
  • Netzwerkvirtualisierung
  • Widerstandsfähigkeit