Modulare serielle Roboter
- 587 Downloads
Zusammenfassung
Modulare serielle Roboter erlauben es, den Roboteraufbau rasch an sich ändernde Handhabungsaufgaben anzupassen. Hierbei stellt die große Vielfalt an resultierenden Kinematiken eine große Herausforderung für die Regelung derartiger Roboter dar. Im Beitrag wird die Anwendung einer neuartigen allgemeinen Lösung des inversen Kinematik-Problems vorgeschlagen und diese auf Flexibilität bezüglich der möglichen Robotergeometrie, numerische Robustheit und Komplexität analysiert und mit alternativen Berechnungsverfahren verglichen.
Schlüsselwörter
inverse Kinematik serielle Manipulatoren Lösungsalgorithmen numerische GenauigkeitModular serial robots
Abstract
Modular serial robots allow a fast adaption of the robot geometry to changing execution tasks. Thus, a challenge to robot control is to deal with this vast variety of resulting kinematic designs. This contribution discusses the use of a new general method for solving the inverse kinematics problem. Flexibility with respect to the robot geometry, numerical robustness and complexity of this method is analyzed and a comparison with alternative methods is performed.
Keywords
inverse kinematics serial manipulators solution methods numerical accuracyNotes
Danksagung
Die in diesem Beitrag dargestellte Arbeit wurde von der Standortagentur Tirol im Rahmen des Förderprogramms Translational Research – Projekt KineControl – gefördert.
Literatur
- 1.Husty, M., Pfurner, M., Schröcker, H.-P. (2005): A new and efficient algorithm for the inverse kinematics of a general serial 6R. In Proceedings of ASME 2005 29th mechanism and robotics conference, Long Beach. Google Scholar
- 2.Jenkins, M. A., Traub, J. F. (1970): A three-stage variables-shift iteration for polynomial zeros and its relation to generalized Rayleigh iteration. Numer. Math., 14, 252–263. MathSciNetzbMATHCrossRefGoogle Scholar
- 3.Lee, C. S. G. (1982): Robot arm kinematics, dynamics and control. Computer, 15(12), 62–80. CrossRefGoogle Scholar
- 4.Lee, H. Y., Liang, C. G. (1988): A new vector theory for the analysis of spatial mechanisms. Mech. Mach. Theory, 23(3), 209–217. CrossRefGoogle Scholar
- 5.Liu, S., Zhu, S. (2007): An optimized real time algorithm for the inverse kinematics of general 6R robots. In Proceedings of the IEEE international conference on control and automation, Guangzhou, China, S. 2080–2084. Google Scholar
- 6.Manocha, D., Canny, J. F. (1992): Real time inverse kinematics for general 6R manipulators. In Proceedings of the IEEE international conference on robotics and automation, Nice, France (S. 383–389). Google Scholar
- 7.Raghavan, M., Roth, B. (1990): Inverse kinematics of the general 6R manipulator and related linkages. Trans. ASME, J. Mech. Des., 115, 228–235. Google Scholar
- 8.Siciliano, B., et al. (2010): Robotics – modelling, planning and control. London: Springer. S. 90ff. Google Scholar
- 9.Siciliano, B., Khatib, O. (2008): Handbook of robotics (Vol. 27). Berlin: Springer. zbMATHCrossRefGoogle Scholar
- 10.Sugihara, T. (2011): Solvability-unconcerned inverse kinematics by the Levenberg-Marquardt method. IEEE Trans. Robot., 27(5), 984–991. MathSciNetCrossRefGoogle Scholar