Tunable natural light realized by phosphor-innovation light-emitting-diode technology



The nature and quality of artificial lighting are becoming more and more recognized and debated issues concerning their impact on comfort, well-being and even human’s health (chronobiology). Therefore, the target must be to emulate natural (sun) light for indoor illumination. In this paper parameters which are responsible for the nature and quality of light sources are elaborated. Leading edge high quality light sources, realized by light emitting diodes (LEDs) for emulating natural light, are presented.

The junction temperature of electroluminescence devices is a key parameter which influences emission wavelength, light output (power efficiency), light degradation and lifetime of the LEDs. We present experimental data and a model which allows one to derive the junction temperature of LEDs under operation.


light emitting diodes PI-LED natural light junction temperature white light emitter chronobiology 

Veränderbares natürliches Licht realisiert mit Phosphor-Innovation Licht-Emittierender-Dioden-Technologie


Die Natur und die Qualität künstlicher Lichtquellen und deren Auswirkungen auf Komfort, Wohlbefinden und Gesundheit werden immer stärker wahrgenommen und diskutiert (Chronobiologie). Daraus folgt nahezu zwingend die Forderung, natürliches (Sonnen-)Licht im Bereich der Innenraumbeleuchtung nachzubilden. In dieser Arbeit werden wesentliche Parameter, welche die Natur und die Qualität von Lichtquellen bestimmen, behandelt. Präsentiert werden technologisch führende und hoch qualitative Lichtquellen zur Erzeugung von „natürlichem“ Licht unter Verwendung von Licht emittierenden Dioden (LEDs).

Die Temperatur der Grenzschicht ist ein Schlüsselparameter, der die Emissionswellenlänge, die Lichtausbeute (Effizienz), die Lichtdegradation und letztlich die Lebensdauer von LEDs bestimmt. Wir präsentieren Messergebnisse zur Grenzschichttemperatur und ein Modell, welches erlaubt, die Temperatur der Grenzschicht der LED im Betrieb zu bestimmen.


Licht emittierende Dioden PI-LED Natürliches Licht Grenzschichttemperatur Weißlicht-Emitter Chronobiologie 


  1. Barkmann, C., Wessolowski, N., Schulte-Markwort, M. (2012): Applicability and efficacy of variable light in schools. Physiol. Behav., 105(3), 621–627. CrossRefGoogle Scholar
  2. Bieske, K., Gall, D., Vandahl, C., Dierbach, O. (2006): Influence of artificial daylight on gerontopsychiatric care of elderly people. In CIE 2cd expert symposium on light and health, CIEx 031:2006, 7.-8.9. Ottawa. Google Scholar
  3. Brainard, G. C., Hanifin, J. P., Greeson, J. M., Byrne, B., Glickman, G., Gerner, E., Rollag, M. D. (2001): Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor. J. Neurosci., 21(16), 6405–6412. Google Scholar
  4. Braunstein, R. (1955): Radiative transitions in semiconductors. Phys. Rev., 99(6), 1892–1893. MathSciNetCrossRefGoogle Scholar
  5. Cajochen, C. (2007): Alerting effects of light. Sleep Med. Rev., 11(6), 453–464. CrossRefGoogle Scholar
  6. Cajochen, C., Munch, M., Kobialka, S., Krauchi, K., Steiner, R., Oelhafen, P., Orgul, S., Wirz-Justice, A. (2005): High sensitivity of human melatonin, alertness, thermoregulation, and heart rate to short wavelength light. J. Clin. Endocrinol. Metab., 90(3), 1311–1316. CrossRefGoogle Scholar
  7. Cameron, J. R., Skofronick, J. G. (1978): Medical physics (pp. 337–384). New York: Wiley. Google Scholar
  8. Figueiro, M. G., Rea, M. S. (2010): The effects of red and blue lights on circadian variations in cortisol, alpha amylase, and melatonin. Int. J. Endocrinol., 2010, 829351. Google Scholar
  9. Figueiro, M. G., Appleman, K., Bullough, J. D., Rea, M. S. (2006): A discussion of recommended standards for lighting in the newborn intensive care unit. J. Perinatol., 26, 19–26. CrossRefGoogle Scholar
  10. GE Lighting (2003). CMH single ended G8.5 product information for OEMs. General Electric Company. Ver. 1.0. Google Scholar
  11. Haitz, R., Tsao, J. Y. (2011): Solid-state lighting: ‘The case’ 10 years after and future prospects. Phys. Status Solidi, a Appl. Mater. Sci., 208(1), 17–29. CrossRefGoogle Scholar
  12. Hattar, S., Liao, H. W., Takao, M., Berson, D. M., Yau, K. W. (2002): Melanopsin-containing retinal. ganglion cells: architecture, projections, and intrinsic photosensitivity. Science, 295(5557), 1065–1070. CrossRefGoogle Scholar
  13. Hofstra, W. A., Weerd, A. W. D. (2008): How to assess circadian rhythm in humans: a review of literature. Epilepsy Behav., 13(3), 438–444. CrossRefGoogle Scholar
  14. Holonyak, N., Bevacqua, S. F. (1962): Coherent (visible) light emission from Ga(As1−xPx) junctions. Appl. Phys. Lett., 1(4), 82–83. CrossRefGoogle Scholar
  15. Lockley, S. W., Brainard, G. C., Czeisler, C. A. (2003): High sensitivity of the human circadian melatonin rhythm to resetting by short wavelength light. J. Clin. Endocrinol. Metab., 88(9), 4502–4505. CrossRefGoogle Scholar
  16. Mills, P. R., Tomkins, S. C., Schlangen, L. J. (2007): The effect of high correlated colour temperature office lighting on employee wellbeing and work performance. J. Circadian Rhythms, 5(2). Google Scholar
  17. Morita, T., Tokura, H. (1996): Effects of lights of different color temperature on the nocturnal changes in core temperature and melatonin in humans. Appl. Hum. Sci., 15(5), 243–246. CrossRefGoogle Scholar
  18. Philips (2012): Lamp Description MasterColor® CDM ED28 standard. Google Scholar
  19. Phipps-Nelson, J., Redman, J. R., Dijk, D. J., Rajaratnam, S. M. W. (2003): Daytime exposure to bright light, as compared to dim light, decreases sleepiness and improves psychomotor vigilance performance. Sleep, 26(6), 695–700. Google Scholar
  20. Pimputkar, S., Speck, J. S., DenBaars, S. P., Nakamura, S. (2009): Prospects for LED lighting. Nat. Photonics, 3(4), 180–182. CrossRefGoogle Scholar
  21. Round, H. J. (1907): A note on carborundum. Electr. World, 19, 309. Google Scholar
  22. Schanda, J., Dányi, M. (1977): Correlated color temperature calculations in the CIE 1976 chromaticity diagramm. Color Res. Appl., 2(4), 161–163. CrossRefGoogle Scholar
  23. Schubert, E. F. (2006b): Light-emitting diodes, 2nd ed. (pp. 332–366). Cambridge: Cambridge University Press. CrossRefGoogle Scholar
  24. Schubert, E. F., Kim, J. K., Luo, H., Xi, J. Q. (2006a): Solid-state lighting—a benevolent technology. Rep. Prog. Phys., 69(12), 3069–3099. CrossRefGoogle Scholar
  25. Steele, R. V. (2007): The story of a new light source. Nat. Photonics, 1(1), 25–26. CrossRefGoogle Scholar
  26. Sust, C. A., Dehoff, P., Lang, D., Lorenz, D. (2012): Verbesserte Lebensqualität für demente Bewohner: Das Forschungsprojekt St. Katharina in Wien. Zumtoble Research. Google Scholar
  27. Thapan, K., Arendt, J., Skene, D. J. (2001): An action spectrum for melatonin suppression: evidence for a novel non-rod, non-cone photoreceptor system in humans. J. Physiol., 535(1), 261–267. CrossRefGoogle Scholar
  28. Xi, Y., Schubert, E. F. (2004): Junction-temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method. Appl. Phys. Lett., 85(12), 2163–2165. CrossRefGoogle Scholar
  29. Xi, Y. G., Gessmann, T., Xi, J. Q., Kim, J. K., Shah, J. M., Schubert, E. F. (2005a): Junction temperature in ultraviolet light-emitting diodes. Jpn. J. Appl. Phys., 44(10), 7260–7266. CrossRefGoogle Scholar
  30. Xi, Y., Xi, J. Q., Gessmann, T., Shah, J. M., Kim, J. K., Schubert, E. F., Fischer, A. J., Crawford, M. H., Bogart, K. H. A., Allerman, A. A. (2005b): Junction and carrier temperature measurements in deep-ultraviolet light-emitting diodes using three different methods. Appl. Phys. Lett., 86(3), 031907. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2012

Authors and Affiliations

  • Reinhold Hetzel
    • 1
    • 2
  • Stefan Tasch
    • 2
  • Günther Leising
    • 1
  1. 1.Institute of Solid State PhysicsGraz University of TechnologyGrazAustria
  2. 2.LUMITECH Produktion und Entwicklung GmbHJennersdorfAustria

Personalised recommendations