Skip to main content
Log in

Isolierstoffe aus Zellulose für die elektrische Isolierung von Leistungstransformatoren

Insulation materials made from cellulose for the electrical insulation of power transformers

  • Originalarbeiten
  • Published:
e & i Elektrotechnik und Informationstechnik Aims and scope Submit manuscript

Zusammenfassung

Im vorliegenden Beitrag wird zuerst auf historische Aspekte und Grundsätzliches bezüglich der Herstellung von Isolierstoffen aus Zellulose, d. h. Papier und Pressspan, eingegangen. Weiterführend werden Grundlagen der elektrischen Dimensionierung der Isolierung von Leistungstransformatoren beschrieben. Im Speziellen werden die Besonderheiten bei Gleichspannungsbelastung der Isolierung sowie die Anforderungen an Entwicklungsversuche von Isolierkomponenten und –Systemen erläutert. Stabile, gut gepresste Wicklungen sind wichtig, um die gewaltigen oszillierenden Kräfte bei Kurzschluss im Netz zu beherrschen. Die Einflüsse der Materialwahl sowie der Trocknungs- und Ölimprägnierungsprozesse werden anhand von Versuchsergebnissen mit kleinen Scheibenspulenmodellen erklärt. Den Abschluss bildet eine Auflistung von praktischen Hinweisen, die zur Verbesserung der Betriebssicherheit und zur erhöhten Betriebsdauer von Leistungstransformatoren beitragen.

Abstract

This article first reports on the history and fundamentals regarding the manufacturing of insulation products made from cellulose, i.e. presspaper and pressboard. Subsequently, the basics of electrical design of power transformer insulation are described. In particular, the peculiarities of DC-stresses on the insulation and the requirements with regard to development tests of insulation components and systems are detailed. Robust and well-clamped windings are essential in order to withstand the internal oscillating forces which are caused by short-circuit events in the grid. The impact of the selection of materials, of the drying and oil impregnation processes is explained by results from laboratory investigations with small disk winding models. Finally, a multitude of hints is given that contribute improving the reliability and prolonging service time of power transformers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1.
Abb. 2.
Abb. 3.
Abb. 4.
Abb. 5.
Abb. 6.
Abb. 7.
Abb. 8.
Abb. 9.
Abb. 10.
Abb. 11.
Abb. 12.
Abb. 13.

Notes

  1. Transformerboard: Markenname der Firma Weidmann.

Literatur

  • Aubin, J. (Convenor) (2000): Effect of particles on transformer dielectric strength. In Cigré WG12.17, Paris. CIGRÉ brochure (Bd. 157).

    Google Scholar 

  • Dahinden, V., Schultz, K., Küchler, A. (1998): Function of solid insulation in transformers. In Transform98 conference, Munich.

    Google Scholar 

  • Derler, F., Kirch, H.-J., Krause, Ch., Schneider, E. (1991): Development of a design method for insulating structures exposed to electric stress in long oil gaps and along oil/Transformerboard interfaces. In 7th ISH, Dresden. Paper 21.16.

    Google Scholar 

  • Heinrich, B., Krause, Ch. (2007): Statistical evaluation of AC and impulse tests on oil immersed transformer insulation models consisting of pressboard spacers between moulded electrodes. In 15th ISH, Ljubljana. Paper T9-92.

    Google Scholar 

  • Heinrich, B., Krause, Ch., Wick, K. (2004): Electrical insulation tests on the modular 400 kV/AC lead exit system for power transformers. In International symposium on high voltage and high power tests. Measurements and qualification of electric power equipment. Craiova: SIMC-EE.

    Google Scholar 

  • IEC 60641: Pressboard and presspaper for electrical purposes.

  • IEC 60763: Laminated pressboard for electrical purposes.

  • Ikeda, M. (1983): Spannung-Zeit-Charakteristik für den Durchschlag der Ölfunkenstrecke im homogenen Feld. ETZ-Arch., 5(12), 409–412.

    Google Scholar 

  • Ikeda, M., Menju, S. (1979): Breakdown probability distribution and equi-probabilistic v-t characteristics of transformer oil. IEEE Trans. Power Appar. Syst., PAS-98(4), 1430–1437.

    Article  Google Scholar 

  • Ikeda, M., Inoue, T. Kawaguchi, K., Mori, S., Haginomori, E. (1998): Particle-in-oil number measurements and their effects on breakdown voltage of transformer oil. IEEJ Trans. Power Energy, 11, 1277–1283.

    Google Scholar 

  • Kappeler, H. (1958): Recent forms of execution of 380 kV transformer bushings. In CIGRÉ session, Paris. Paper no. 126.

    Google Scholar 

  • Krause, Ch., Goetz, W. (1999): The change of the clamping pressure in transformer windings due to variation of the moisture content – tests with pressboard spacer stacks. CIGRÉ SC12 transformers colloquium, Budapest.

    Google Scholar 

  • Krause, Ch., Woschitz, R. (2002): The temperature dependence of the dielectric strength of transformer oil and pressboard insulation at HVDC polarity reversal stress. In 14th international conference on dielectric liquids, Graz (Austria).

    Google Scholar 

  • Krause, Ch., Goetz, W., Heinrich, B. (2002): The impact of drying and oil impregnation conditions and of temperature cycles on the clamping force of power transformer windings. In ISEI conference (S. 350–353), Boston.

    Google Scholar 

  • Lindroth, A. (Convenor) (1994): The relationship between test and service stresses as a function of resistivity ratio for HVDC converter transformers and smoothing reactors. ELECTRA, 157, 33–58.

    Google Scholar 

  • Moser, H. P. (1979): Herstellung und Eigenschaften von Transformerboard. In Scientia Electrica: Kap. B. Transformerboard (S. 21–31).

    Google Scholar 

  • Moser, H. P. (1979): V Druckfestigkeit. In Transformerboard. Scientia electrica (Bd. E). (S. 71–88).

    Google Scholar 

  • Moser, H. P., Dahinden, V. (1987): In Transformerboard II. Transformerboard-Isolation unter HGUe-Beanspruchung. Styria (Bd. L). (S. 55–78).

    Google Scholar 

  • Nelson, J. K. (1989): An assessment of the physical basis for the application of design criteria for dielectric structures. IEEE Trans. Electr. Insul., 24(5), 835–847.

    Article  Google Scholar 

  • Samat, J., Lacaze, D. (1988): Micro-particles in transformer oil and dielectric withstand effects. Alsthom Rev., 11, 47–57.

    Google Scholar 

  • Sie, T. H., Wohlfahrt, O. (1962): Transference of test results from experiments on small models to n-time larger test objects with insulation under oil. IEEE Trans. Power Appar. Syst., 81, 601–608.

    Article  Google Scholar 

  • Sinz, P. (1990): Der Einfluss von Feuchte und Partikeln auf die elektrische Festigkeit von Isolierölen. Dissertation Technische Universität Graz.

  • Trinh, G., Vincent, C., Régis, J. (1982): Statistical dielectric degradation of large volume oil-insulation. IEEE Trans. Power Appar. Syst., 101(10), 3712–3721.

    Article  Google Scholar 

  • Tschudi, D., Krause, Ch., Kirch, H.-J., Franchek, M., Malewski, R. (1994): Strength of transformer paper-oil insulation expressed by the Weidmann oil curves. In IWD CIGRÉ WG 33.03, Malaga.

    Google Scholar 

  • Weber, K. H., Endicott, H. S. (1957): Extremal area effect for large electrodes for the electric breakdown of transformer oil. AIEE Trans., 76(III), 1091–1098.

    Google Scholar 

  • Yakov, S. (Convenor) (1991): Statistical analysis of dielectric test results. In Cigré SC15 WG01/TF02. Brochure (Bd. 66).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Krause.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krause, C. Isolierstoffe aus Zellulose für die elektrische Isolierung von Leistungstransformatoren. Elektrotech. Inftech. 129, 332–341 (2012). https://doi.org/10.1007/s00502-012-0030-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00502-012-0030-3

Schlüsselwörter

Keywords

Navigation