Skip to main content

Advertisement

Log in

From cell level to system level: efficient design for optimised energy storage systems

Von der Zeit- zur Systemebene: effizientes Design für optimierte Energiespeichersysteme

  • Originalarbeiten
  • Published:
e & i Elektrotechnik und Informationstechnik Aims and scope Submit manuscript

Summary

The reduction of our dependence from oil as primary energy source as well as the reduction of CO2 emissions is currently one of the key drivers for automotive development. The introduction and promotion of electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) can significantly contribute to these global objectives. Lithium ion technology is one of the key enabling technologies for this epochal change. Therefore the paper investigates the state of the art of lithium ion batteries and gives an overview over the variety of possible chemistries as well as the main development issues to realise highly optimised, reliable and safe Li-ion batteries applicable for HEVs and EVs. These issues are investigated on two levels: the cell level and the system level. On both levels different aspects have to be considered to allow a wide introduction of lithium ion batteries in automotive applications.

Zusammenfassung

Die Reduktion der Abhängigkeit von fossilen Treibstoffen und der CO2-Emissionen ist derzeit eine der zentralen Triebkräfte in der automotiven Forschung und Entwicklung. In diesem Zusammenhang spielt die Einführung von Elektro- und Plug-in-Hybridfahrzeugen eine wesentliche Rolle, wobei Lithium-Ionen-Technologie als zentraler Enabler für die Forcierung dieser alternativen Antriebskonzepte angesehen werden kann. Dieser Beitrag gibt daher einen Überblick über den derzeitigen Entwicklungsstand von Li-Ionen-Batterien, deren chemische Vielfalt sowie die zentralen Anforderungen an die Entwicklung hoch optimierter, verlässlicher und sicherer Li-Ionen-Batterien für Elektro- und Hybridfahrzeuge. Der Entwicklungsprozess ist dabei auf zwei Ebenen zu betrachten: der Zellebene und der Systemebene. Auf beiden Ebenen sind unterschiedliche Aspekte zu berücksichtigen, um eine breite Einführung von Li-Ionen-Technologie für automotive Anwendungen zu ermöglichen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AA.VV (2007): Progress Report for Energy Storage Research and Development, U.S. Department of Energy, Office of Vehicle Technologies, Washington, D.C. 20585–0121

  • Amine, K., Henriksen, G., Duong, T., Battaglia, V., Barnes, J., Sutula, R. (2002): Lithium Ion Battery with Improved Life and Abuse Tolerance for HEV Applications. EVS 19

  • Appetecchi, G. B., Croce, F., Scrosati, B. (1998): Lithium and lithium ion polymer batteries. Progress in Batteries & Battery Materials 17: 68–79

    Google Scholar 

  • Armand, M., Tarascon, J.-M. (2008): Building better batteries. Nature 451: 652–657 (7 February 2008)

    Article  Google Scholar 

  • Balakrishnan, P. G., Ramesh, R., Kumar, T. P. (2006): Safety mechanisms in lithium-ion batteries. Journal of Power Sources 155: 401

    Google Scholar 

  • Christen, T., Carlen, M. W. (2000): Theory of Ragone plots. Journal of Power Sources 91: 210–216

    Article  Google Scholar 

  • Caldevilla, A., Conte, F. V., Pirker, F. (2007): Decision criteria for an energy storage system utilizing lithium-ion batteries for an electric scooter. EET 2207, Brussel 2007

  • Caldevilla, A., Conte, F. V., Pirker, F. (2008): Validation of an advanced lithium-ion battery model for electric and hybrid drive trains. EET-2008 Int. Advanced Mobility Forum, Geneva, March 11th–13th, 2008

  • Conte, F. V. (2006): Battery & Battery Management for Hybrid Electric Vehicles: a Review. e&i 2002, H. 10: 424–443

    Google Scholar 

  • Conte, F. V., Oberguggenberger, H. (2007): Advanced Design Methods for Energy Storage System for Automotive Application. IPSS 2007, Bath 2007

  • Conte, F. V., Pirker, F., Fenz, C.-J., Lacher, H., Plaßnegger, B. (2008): High performances Light Electric Vehicle: a challenge for designing Li-Ion battery system. AABC 2008, Tampa 2008

  • Iguchi, T., Okamoto, K., Kuratomi, J., et al. (2004): Development of Lithium-ion Battery for Hybrid Electric Vehicles (HEVs). The 45th Battery Symp. on 3D04 in Japan, Kyoto

  • Iguchi, T., Sasaki, T., Kohno, K., et al. (2007): High Power and Long Life Lithium-ion Battery for HEVs. EVS 23

  • Inoue, T., Sasaki, T., Imamura, N., Yoshida, H., et al. (2001): Calendar and Cycle Life Prediction of 100 Ah Lithium-Ion Cells for Space Applications. NASA Aerospace Battery Workshop, Huntsville, AL, Nov. 27–29, 2001

  • Liu, J., Xu, K., Jow, T. R., Amine, K. (2002): Improved Spinel Lithium Manganese Oxide as cathode for High Power Battery for HEV Application. 202nd ECS Meeting, Salt Lake City, UT

  • Patil, A., Patil, V., Wook, D., et al. (2008): Issue and challenges facing rechargeable thin film lithium batteries. Materials Research Bulletin 43 (2008): 1913–1942

    Article  Google Scholar 

  • Pichler, P., Heidenbauer, O., Lind, R., et al. (2007): Development of Li-Ion Battery Systems for HEV Applications at MAGNA STEYR. EVS 23

  • Ragone, D. V. (1968): Review of Battery Systems for Electrically Powered Vehicles. Mid-Year Meeting of the SAE, Detroit, MI, May 20–24, 1968

  • Shim, J., Sierra, A., Striebel, K. A.: The development of low cost LiFePO4-based high power lithium-ion batteries. eScholarship Repository, University of California (http://repositories.cdlib.org/lbnl/LBNL-54098)

  • Shukla, A. K., Prem Kumar, T. (2008): Materials for next-generation lithium batteries. Current Science 94 (3), 10 February 2008

  • Srinivasan, V. (2008): Battery for Vehicular Applications (http://berc.lbl.gov/venkat)

  • Swan, David H., Arikara, Murali P., Patton, Alton D. (1993): Battery Modeling for Electric Vehicle Applications Using Neural Networks. Society of Automotive Engineers Technical Paper Series (931009)

  • Tarascon, J.-M., Armand, M. (2001): Issues and challenges facing rechargeable lithium batteries. Nature 414: 359–367

    Article  Google Scholar 

  • Venugopal, G. (2001): Characterization of thermal cut-off mechanisms in prismatic lithium-ion batteries. Journal of Power Sources 101 (2001): 231

    Article  Google Scholar 

  • Yang, M. H. (2007): Outlook on future battery chemistries and potential improvements. LEV Conf, Hsinchu Taiwan, March 2007

  • Zhang, S. S. (2006): A review on the separators of liquid electrolyte Li-ion batteries. Journal of Power Sources 164 (2007): 351–364

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conte, F. From cell level to system level: efficient design for optimised energy storage systems. Elektrotech. Inftech. 125, 372–376 (2008). https://doi.org/10.1007/s00502-008-0583-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00502-008-0583-3

Keywords

Schlüsselwörter

Navigation