Skip to main content
Log in

Verkehrsprognosen mit Visuellem Data Mining und Künstlicher Intelligenz

Traffic predictions with visual data mining and artificial intelligence

  • Originalarbeiten
  • Published:
e & i Elektrotechnik und Informationstechnik Aims and scope Submit manuscript

Zusammenfassung

Jede Beeinträchtigung des Verkehrsflusses unterliegt konkreten Ursachen. Oft entstehen sie aus vorherrschenden Rahmenbedingungen wie Wetter oder besonderen Ereignissen. Ein vom BMVIT kofinanziertes Forschungsprojekt hat sich zum Ziel gesetzt, die Abhängigkeiten und Zusammenhänge zwischen verkehrsbeeinflussenden Rahmenbedingungen und der potentiellen Staugefahr zu untersuchen. Es werden Ansätze aus dem Visuellen Data Mining und der Künstlichen Intelligenz vorgestellt. Die Auswirkungen von Umgebungsbedingungen auf den Verkehrsfluss sind oftmals durch Bildung charakteristischer Muster vorhersagbar. Mit diesem Hintergrund kann ein neues Niveau der Verkehrsprognose umgesetzt werden.

Summary

Every interference of traffic flow is subject to different causes. The majority of them are related to prevailing circumstances like weather and events. During a research project which was co-financed by the Austrian Ministry of Transport coherences and dependencies between traffic sensitive circumstances and congestion risk were investigated. Approaches of visual data mining and artificial intelligence are introduced. The impact of environment conditions on traffic flow is often predictable through detection of characteristic patterns. On this knowledge a new quality of traffic forecast can be implemented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  • Asamer, J., Din, K., Toplak, W. (2007): Self Organizing Maps for Traffic Prediction. Proc. of the 25th IASTED Int. Multi-Conf. Artificial Intelligence and Applications. ISBN Hardcopy: 987-0-88986-629-4/CD: 978-0-88986-631-7, February 12–14, Innsbruck, Austria

  • ENV 13106 (2000): Road transport and traffic telematics – DATEX traffic and travel data dictionary, ISBN: 0580361586

  • Golob, T. E., Recker, W. W. (2001): Relationships Among Urban Freeway Accidents, Traffic Flow, Weather and Lightning Conditions. California PATH Working Paper, UCB-ITS-PWP-2001-19, California PATH Program, Institute of Transportation Studies, University of California, Berkeley

  • Himberg, J. (2000): A SOM-based cluster visualisation and its application for false colouring. Proc. of the IEEE-INNS-ENNS Int. Joint Conf. on Neural Networks (IJCNN'00), 3: 587–592

    Article  Google Scholar 

  • Ishak, S., Alecsandru, C. (2004): Optimizing Traffic Prediction Performance of Neural Networks under Various Topological, Input, and Traffic Condition Settings. J. Transp. Engrg., 130 (4): 452–465

    Article  Google Scholar 

  • Ishak, S., Al-Deek, H. (2002): Performance Evaluation of a Short-Term Time-Series Traffic Prediction Model. Acc. for publ. ASCE. J. Transport. Eng., 128 (6): 490–498

    Article  Google Scholar 

  • Keim, D. A. (2002): Information Visualization and Visual Data Mining. IEEE Trans. on Visualization and Computer Graphics, 7 (1): 100–107, January–March

    MathSciNet  Google Scholar 

  • Kohonen, T. (1997): Self-Organizing Maps. Berlin, Heidelberg: Springer

    MATH  Google Scholar 

  • Kwon, J., Coifman, B., Bickel, P. (2000): Day-to-Day Travel Time Trends and Travel Time Prediction from Loop Detector Data. Transportation Research Board Annual Meeting in Washington D.C., USA

  • Smith, B. L., Williams, B. M., Oswald, R. K. (2002): Comparison of Parametric and Nonparametric Models for Traffic Flow Forecasting. Transport. Res. C, 10 (4): 303–321

    Article  Google Scholar 

  • Sammon, J. W. (1969): A Non-Linear Mapping for Data Structure Analysis. IEEE Trans. Computers, C-18 (5): 401–409

    Article  Google Scholar 

  • Schneider, W., Asamer, J., Mrakotsky, M., Toplak, W. (2007): Influence of Environment Conditions on Traffic Flow. The 10th Int. IEEE Conf. on Intelligent Transportation Systems (ITSC 2007), Sept. 30–Oct. 3, Seattle, USA

  • Toplak, W., Hainitz, N., Asamer, J. (2006): Prognosen mit Neuronalen Netzen und Neuro-Fuzzy-Modellen. Österreichische Gesellschaft für Artificial Intelligence. ÖGAI Journal, Jg 2006, Nr. 3: 24–33, Vol. 25, ISSN 0254-4326, Wien, Österreich

    Google Scholar 

  • Toplak, W., Asamer, J., Din, K. (2007): Neural Networks supporting Causal Reasoning in Traffic Telematics. Proc. of the 25th IASTED Int. Multi-Conf. Artificial Intelligence and Applications. ISBN Hardcopy: 987-0-88986-629-4/CD: 978-0-88986-631-7, February 12–14, Innsbruck, Austria

  • TRB (2007): Artificial Intelligence in Transportation – Information for Application. Transportation Research Circular E-C113 Transportation Research Board, Artifical Intelligence and Advanced Computing Applications Committee, ISSN 0097-8515

  • Ultsch, A. (1993): Knowledge Extraction from Self-organizing Neural Networks. Information and Classification. Berlin: Springer: 301–306

    Google Scholar 

  • Vesanto, J., Alhoniemi, E. (2000): Clustering of the Self-Organizing Map. IEEE Trans. Neural Networ., 11 (3): 586–600

    Article  Google Scholar 

  • Zell, A. (2000): Simulation neuronaler Netze. Oldenburg: Oldenburg Verlag

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, W., Toplak, W. Verkehrsprognosen mit Visuellem Data Mining und Künstlicher Intelligenz. Elektrotech. Inftech. 125, 232–237 (2008). https://doi.org/10.1007/s00502-008-0538-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00502-008-0538-8

Schlüsselwörter

Keywords

Navigation