Skip to main content
Log in

Tomografie eines Quantenzustands – Verschränkung und Reinheit

Quantum state tomography – entanglement and purity

  • Originalarbeit
  • Published:
e & i Elektrotechnik und Informationstechnik Aims and scope Submit manuscript

Zusammenfassung

Es wird die experimentelle Herstellung und Quantenzustandstomografie eines Acht-Teilchen-verschränkten Zustands in einem Ionenfallenquantencomputer diskutiert. Die so gewonnene vollständige quantenmechanische Beschreibung des Zustands dient nun weiteren Untersuchungen. Insbesondere werden Güte und Reinheit des komplexen Zustands berechnet. Darüber hinaus wird nachgewiesen, dass der Zustand verschränkt ist.

Summary

We discuss the experimental generation and quantum state tomography of an entangled state of eight trapped ions. Based on the complete description of the complex quantum state in terms of the density matrix, we analyze its fidelity and purity. Furthermore, we show that this state carries genuine eight particle entanglement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  • Bourennane, M., Eibl, M., Kurtsiefer, C., Gaertner, S., Weinfurter, H., Gühne, O., Hyllus, P., Bruß, D., Lewenstein, M., Sanpera, A. (2004): Experimental detection of multipartite entanglement using witness operators. Physical Review Letters 92: 087902.

    Article  Google Scholar 

  • Cirac, J. I., Zoller, P. (1995): Quantum computation with cold trapped ions. Physical Review Letters 74: 4091.

    Article  Google Scholar 

  • Davisson, C., Germer, L. H. (1927): Diffraction of electrons by a crystal of nickel. Physical Review 30: 705.

    Article  Google Scholar 

  • De Broglie, L. (1924): Recherches sur la théorie des quanta. Thèse. Paris.

    Google Scholar 

  • Diedrich, F., Bergquist, J. C., Itano, W. M., Wineland, D. J. (1989): Laser cooling to the zero point energy of motion. Physical Review Letters 62: 403–406.

    Article  Google Scholar 

  • Dür, W., Vidal, G., Cirac, J. I. (2000): Three qubits can be entangled in two inequivalent ways. Physical Review A 62: 062314.

    Article  MathSciNet  Google Scholar 

  • Gulde, S., Rotter, D., Barton, P., Schmidt-Kaler, F., Blatt, R., Hogervorst, W. (2001): Simple and efficient photoionization loading of ions for precision ion-trapping experiments. Applied Physics B 73: 861.

    Article  Google Scholar 

  • Häffner, H., Hänsel, W., Roos, C. F., Benhelm, J., Chek-al-kar, D., Chwalla, M., Körber, T., Rapol, U. D., Riebe, M., Schmidt, P. O., Becher, C., Gühne, O., Dür, W., Blatt, R. (2005): Scalable multiparticle entanglement of trapped ions. Nature 438: 643.

    Article  Google Scholar 

  • Hradil, Z., Rehacek, J., Fiurasek, J., Jezek, M. (2004): Maximum-likelihood methods in quantum mechanics. Lecture Notes in Physics 649: 59–112.

    MathSciNet  Google Scholar 

  • Kjaergaard, N., Hornekaer, L., Thommesen, A. M., Videsen, Z., Drewsen, M. (2000): Isotope selective loading of an ion trap using resonance-enhanced two-photon ionization. Applied Physics B 71: 207.

    Google Scholar 

  • Nielsen, M., Chuang, I. (2000): Quantum computation and quantum information. New York: Cambridge Univ. Press.

    MATH  Google Scholar 

  • Paul, W. (1990): Electromagnetic traps for charged and neutral particles. Review of Modern Physics 62: 531.

    Article  Google Scholar 

  • Paul, W., Osberghaus, O., Fischer, E. (1958): Forschungsber. Wirtsch.-Verkehrminist. Nordrhein-Westfalen: 415.

    Google Scholar 

  • Peres, A. (1995): Quantum theory – concepts and methods. Dordrecht: Kluwer Academic Publishers.

    MATH  Google Scholar 

  • Raizen, M. G., Gilligan, J. M., Bergquist, J. C., Itano, W. M., Wineland, D. J. (1992): Ionic crystals in a linear Paul trap. Physical Review A 45: 6493–6501.

    Article  Google Scholar 

  • Roos, C. F., Lancaster, G. P. T., Riebe, M., Häffner, H., Hänsel, W., Gulde, S., Becher, C., Eschner, J., Schmidt-Kaler, F., Blatt, R. (2004b): Bell states of atoms with ultralong lifetimes and their tomographic state analysis. Physical Review Letters 92: 220402.

    Article  Google Scholar 

  • Roos, C. F., Riebe, M., Häffner, H., Hänsel, W., Benhelm, J., Lancaster, G. P. T., Becher, C., Schmidt-Kaler, F., Blatt, R. (2004a): Control and measurement of three-qubit entangled states. Science 304: 1478.

    Article  Google Scholar 

  • Schmidt-Kaler, F., Häffner, H., Gulde, S., Riebe, M., Lancaster, G. P. T., Deuschle, T., Becher, C., Hänsel, W., Eschner, J., Roos, C. F., Blatt, R. (2003): How to realize a universal quantum gate with trapped ions. Applied Physics B 77: 789.

    Article  Google Scholar 

  • Schrödinger, E. (1935): Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften 23: 807–812, 823–828, 844–849.

    Google Scholar 

  • Werner, R. F. (1989): Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Physical Review A 40: 4277.

    Article  Google Scholar 

  • White, A. G., James, D. F. V., Eberhard, P. H., Kwiat, P. G. (1999): Nonmaximally entangled states: production, characterization, and utilization. Physical Review Letters 83: 3103.

    Article  Google Scholar 

  • Wineland, D. J., Drullinger, R. E., Walls, F. L. (1978): Radiation-pressure cooling of bound resonant absorbers. Physical Review Letters 40: 1639–1642.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gühne, O., Häffner, H. Tomografie eines Quantenzustands – Verschränkung und Reinheit. Elektrotech. Inftech. 124, 131–136 (2007). https://doi.org/10.1007/s00502-007-0431-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00502-007-0431-x

Schlüsselwörter

Keywords

Navigation