Skip to main content

Advertisement

Log in

Formation Quality, Mechanical Properties, and Processing Behavior of Pure Zinc Parts Produced by Laser-Based Manufacturing for Biodegradable Implants

Prozessverhalten und mechanische Eigenschaften von additiv gefertigten Bauteilen für biologisch abbaubare Implantate aus reinem Zink

  • Originalarbeit
  • Published:
BHM Berg- und Hüttenmännische Monatshefte Aims and scope Submit manuscript

Abstract

Recent studies have shown that Zinc (Zn) exhibits promising applications for biodegradable medical implants due to the good combination of biocompatibility, biodegradation rate, and mechanical properties. Only a few recent reports can be found on additive manufacturing of Zn parts. Either the obtained density is too low or the process window is quite narrow due to excessive evaporation. This paper aims to clarify the effect of process parameters on densification during the Laser Powder Bed Fusion (LPBF) processing of pure Zn powder and to obtain high relative density in a reasonable process window. Porosity results either from a lack of fusion due to insufficient laser energy or from gas entrapment due to excessive evaporation. The side faces of cubes are attached by numerous partially melted powder particles, which deteriorates the surface quality. The arithmetical mean height (Sa) on side surfaces can be reduced after sand blasting from 10.12 μm to 4.83 μm for as-melted status. Lattice structures are obtained stably with a strut diameter of about 500 μm. Cylinders were manufactured and machined later into the shape of tensile test specimens. The average values of elastic modulus, yield strength, ultimate strength, and elongation were measured as 35.91 GPa, 101.67 MPa, 113.33 MPa, and 10.8% respectively for LPBF manufactured pure Zn parts with relative density over 99.90%.

Zusammenfassung

Die Inhalte jüngster Studien belegen, dass Zink (Zn) eine gute Kombination aus Biokompatibilität, biologischer Abbaurate und mechanischen Eigenschaften aufweist. Zn ist daher ein vielversprechendes Material für biologisch abbaubare, medizinische Implantate. In nur wenigen aktuellen Veröffentlichungen wird die additive Fertigung von Zn Bauteilen untersucht. Oftmals wird in diesen über eine vergleichsweise kleine relative Dichte oder ein sehr enges Prozessfenster berichtet, was auf die vergleichsweise starke Verdampfung und unruhiges Prozessverhalten während der Verarbeitung von Zn mittels additiver Fertigungsverfahren zurückzuführen ist. Im Rahmen dieser Veröffentlichung soll der Einfluss der Verfahrensparameter des Laser Powder Bed Fusion (LPBF) Prozesses auf die relative Dichte von reinem Zn näher untersucht werden. Ziel ist die Entwicklung eines geeigneten Prozessfensters, das die Verarbeitung von reinem Zn mit einer relativen Dichte > 99.5 % ermöglicht. Die Porosität resultiert entweder aus Anbindungsfehlern, welche durch zu kleine Laserenergie verursacht werden, oder durch Gaseinschlüsse in Folge der vergleichsweise großen Verdampfung. Die Oberflächenrauheit wird durch an der Oberfläche angesinterte Pulverpartikel verkleinert. Durch Sandstrahlen kann die Oberflächenrauheit (Sa) von ursprünglich 10.12 μm auf 4.83 μm verkleinert werden. Die Fertigung von Gitterstrukturen mit einem Strebendurchmesser von 500 µm ist reproduzierbar möglich. Zur Bestimmung der mechanischen Eigenschaften werden zylinderförmige Probekörper mit Hilfe spanender Fertigungsverfahren auf Zugprobengeometrie gearbeitet. Für LPBF gefertigte Zn-Probekörper mit einer relativen Dichte > 99.90 % werden in Zugversuchen für Elastizitätsmodul, Streckgrenze, Bruchfestigkeit und -dehnung durchschnittlich Werte in Höhe von 35.91 GPa, 101.67 MPa, 113.33 MPa bzw. 10.8 % ermittelt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chen, Q. Z.; Thouas, G. A.: Metallicallic implant biomaterials, Materials Science and Engineering R, 87 (2015), pp 1–57

    Article  Google Scholar 

  2. Zheng, Y. F.; Gu, X. N.; Wittete, F.: Biodegradable metals, Materials Science and Engineering R, 77 (2014), pp 1–34

    Article  Google Scholar 

  3. Hermawan, H.; Dubé, D.; Mantovani, D.: Developments in metallic biodegradable stents, Acta Biomaterialia, 6 (2010), pp 1693–1697

    Article  Google Scholar 

  4. Chen, Y.; Xu, Z.; Smith, C.; Sankar, J.: Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomaterials, 10 (2014), pp 4561–4573

    Article  Google Scholar 

  5. Agarwal, S.; Curtin, J.; Duffy, B.; Jaiswal, S.: Biodegradable magnesium alloys for orthopedic applications a review on corrosion, biocompatibility and surface modifications, Materials Science and Engineering C, 68 (2016), pp 948–963

    Article  Google Scholar 

  6. Bowen, P. K.; Drelich, J.; Goldman, J: Zn exhibits ideal physiological corrosion behavior for bioabsorbable stents Advanced Materials, 25 (2013), pp 2577–2582

    Article  Google Scholar 

  7. Vojtech, D.; Kubasek, J.; Serak, J.; Novak, P.: Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation, Acta Biomaterialia, 7 (2011), pp 3515–3522

    Article  Google Scholar 

  8. Ma, J.; Zhao, N.; Zhu, D. H.: Bioabsorbable zinc ion induced biphasic cellular responses in vascular smooth muscle cells, Science Reports, 6 (2016), pp 26661

    Article  Google Scholar 

  9. Mostaed, E.; Sikora, J. M.; Mostaed, A.; Lolfredo, S.; Demir, A. G.; Previtali, B.; Mantovani, D.; Beanland, R.; Vedani, M.: Novel Zn-based alloys for biodegradable stent applications: design, development and in vitro degradation, Journal of the Mechanical Behavior of Biomedical Materials, 60 (2016), pp 581–602

    Article  Google Scholar 

  10. Li, H. F.; Xie, H. X.; Zheng, Y. F.; Cong, Y.; Zhou, F. Y.; Qiu, K. J.; Wang, X.; Chen, S. H.; Huang, L.; Tian, L.; Qin, L.: Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr. Science Reports, 5 (2015), p 10719

    Article  Google Scholar 

  11. Li, H. F.; Yang, H. T.; Zheng, Y. F.; Zhou, F. Y., Qiu, K. J.; Wang, X.: Design and characterizations of novel biodegradable ternary Zn-based alloys with IIA nutrient alloying elements Mg, Ca and Sr, Materials and Design, 83 (2015), pp 95–102

    Article  Google Scholar 

  12. Liu, X. W.; Sun, J. K.; Zhou, F. Y.; Yang, Y. H.; Chang, R. C.; Qiu, K. J.; Pu, Z. J.; Li, L.; Zheng, Y. F.: Micro-alloying with Mn in Zn alloy for future biodegradable metals application, Materials Design, 94 (2016), pp 95–104

    Article  Google Scholar 

  13. Kubasek, J.; Vojtech, D.; Jablonska, E.; Pospisilova, I.; Lipov, J.; Ruml, T.: Structure, mechanical characteristic, in vitro degradation, cytotoxicity, genotoxicity and mutagenicity of novel biodegradable Zn-Mg alloys, Materials Science and Engineering C, 58 (2016), pp 24–35

    Article  Google Scholar 

  14. Vandenbroucke, B.; Kruth, J. P.: Selective laser melting of biocompatible metals for rapid manufacturing of medical parts, Rapid Prototyping Journal, 13 (2007), no 4, pp 196–203

    Article  Google Scholar 

  15. Yap, C. Y.; Chua, C. K.; Dong, Z. L.; Liu, Z. H.; Zhang, D. Q.; Loh, L.E.; Sing, S. L.: Review of SLM materials and applications. Applied Physics Reviews, 2 (2015), no 4, p 041101

    Article  Google Scholar 

  16. Manakari, V.; Parande, G.; Gupta, M.: Selective Laser Melting of Magnesium and Magnesium Alloy Powders: A Review, Metal, 7 (2017), no 2, pp 1–35

    Google Scholar 

  17. Montani, M.; Demir, A. G.; Mostaed, E.; Vedani, M.; Previtali, B.: Process ability of pure Zn and pure Fe by SLM for biodegradable metallic implant manufacturing, Rapid Prototyping Journal, 23 (2016), no 3, pp 514–523

    Article  Google Scholar 

  18. Demir, A. G.; Monguzzi, L.; Previtali, B.: Selective laser melting of pure Zn with high density for biodegradable implant manufacturing, Additive Manufacturing, 15 (2017), pp 20–28

    Article  Google Scholar 

  19. Grasso, M.; Demir, A. G.; Previtali, B.; Colosimo, B. M.: In situ monitoring of selective laser melting of Zn powder via infrared imaging of the process plume, Robotics and Computer-Integrated Manufacturing, 49 (2018), pp 229–239

    Article  Google Scholar 

  20. Lietaert, K.; Baekelant, W.; Thijs, L.; Vleugels, J.: Direct metal printing of Zn: from single laser tracks to high density parts, World PM2016, Conference Paper Hamburg, AM-Special Aspects in AM Powders, Swerea KIMAB, Sweden, 2016, pp 1–6

  21. Kim, J.; Oh, S.; Ki, H.: Effect of keyhole geometry and dynamics in zero-gap laser welding of Zn coated steel sheets, Journal of Materials Processing Technology, 232 (2016), pp 131–141

    Article  Google Scholar 

  22. Akhter, R.; Steen, W. M.; Watkins, K. G.: Welding zinc-coated steel with a laser and the properties of the weldment, Journal of Laser Applications, 3 (1991), no 2, pp 9–20

    Article  Google Scholar 

  23. Li, X.; Lawson, S.; Zhou, Y.: Novel technique for laser lap welding of zinc-coated sheet steels, Journal of Laser Applications, 19 (2007), no 4, pp 259–264

    Article  Google Scholar 

  24. Mei, L. F.; Chen, G.Y.; Yan, D. B.; Xie, D.; Ge, X.H.; Zhang, M. J.: Impact of inter-sheet gaps on laser overlap welding performance for galvanized steel, Journal of Materials Processing Technology, 226 (2015), pp 757–768

    Article  Google Scholar 

  25. Chen, W.; Ackerson, P.; Molian, P.: CO2 laser welding of galvanized steel using vent holes, Material and Design, 30 (2009), pp 245–251

    Article  Google Scholar 

  26. Chen, Z. C.; Yang, S. L.; Wang, C. M.; Hu,X. Y.; Shao, X. Y.; Wang, J.: A study of fiber laser welding of galvanized steel using a suction method, Journal of Materials Processing Technology, 214 (2014), pp 1456–1465

    Article  Google Scholar 

  27. Ferrara, B.; Mullen, L.; Jones, E.; Stamp, R.; Sutcliffe, C. J.: Gas flow effects on selective laser melting (SLM) manufacturing performance, Journal of Materials Processing Technology, 212 (2012), pp 355–364

    Article  Google Scholar 

  28. Ladewig, A.; Schlick, G.; Fisser, M.; Schulze, V.; Glatze, U.: Influence of the shielding gas flow on the removal of process by-products in the selective laser melting process, Additive Manufacturing, 10 (2016), pp 1–9

    Article  Google Scholar 

  29. Meiners, W.: Direktes Selektives Laser Sintern einkomponentiger metallischer Werkstoffe, Aachen: Shaker Verlag, 1999

    Google Scholar 

  30. Merkt, S.: Qualifizierung von generativ gefertigten Gitterstrukturen für maßgeschneiderte Bauteilfunktionen, Dissertation Aachen: (RWTH Aachen University), 2015

    Google Scholar 

  31. Bowen, P. K.; Drelich, J.; Goldman, J.: Zn exhibits ideal physiological corrosion behavior for bioabsorbable stents, Advanced Materials, 25 (2013), pp 2577–2582

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximilian Voshage.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voshage, M., Wen, P., Schaukellis, M. et al. Formation Quality, Mechanical Properties, and Processing Behavior of Pure Zinc Parts Produced by Laser-Based Manufacturing for Biodegradable Implants. Berg Huettenmaenn Monatsh 164, 133–140 (2019). https://doi.org/10.1007/s00501-019-0829-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00501-019-0829-x

Keywords

Schlüsselwörter

Navigation