Skip to main content

Advertisement

Log in

Atmospheric Corrosion Resistance of Stainless Steel: Results of a Field Exposure Program in the Middle-East

Atmosphärische Korrosionsbeständigkeit von Edelstahl: Ergebnisse eines Feldauslagerungsprogramms im Mittleren Osten

  • Originalarbeit
  • Published:
BHM Berg- und Hüttenmännische Monatshefte Aims and scope Submit manuscript

Abstract

Stainless steels have been widely used as architectural and construction materials because of their high degree of corrosion resistance, unique aesthetic quality, and stability in an unpolluted atmosphere. Although stainless steel is highly corrosion resistant, localized corrosion can occur in certain environments, especially in marine atmospheric conditions if the appropriate grade is not used. Exposure of stainless steel to an environment more aggressive than the limiting conditions may be harmful to its aesthetic appearance and ultimately even to its load-bearing capacity.

Selecting a suitable stainless steel grade requires knowledge of the actual location of the application and the atmospheric conditions. In terms of materials selection, the austenitic stainless steel grade 316/316L has proved a very popular choice for architectural applications in many locations, but it is not always suitable at demanding sites such as marine environments in the Middle-East. In such cases the use of a higher-performance grade, often in combination with a good surface finish and established cleaning routines, is required to maintain pristine surfaces.

The main objective of this paper is to present information about the atmospheric corrosion resistance of a number of stainless steels in the Middle-East at a marine site. The results obtained are analysed and discussed in terms of factors affecting atmospheric corrosion of stainless steel such as the, alloying element level, surface roughness, surface treatment, and microclimate.

Zusammenfassung

Nichtrostende Stähle werden in großem Umfang aufgrund ihrer hohen Korrosionsbeständigkeit, einzigartigen ästhetischen Qualität und Stabilität in nicht verunreinigten Atmosphären als Baustoffe verwendet. Obwohl Edelstahl sehr korrosionsbeständig ist, kann eine lokalisierte Korrosion in bestimmten Umgebungen auftreten, insbesondere unter maritimen Bedingungen, wenn nicht eine entsprechende Legierungslage verwendet wird. Wenn Edelstahl einer Umgebung ausgesetzt wird, die aggressiver als die Grenzbedingungen ist, kann seine Ästhetik und letztlich sogar seine Tragfähigkeit beeinträchtigt werden.

Die Auswahl einer geeigneten Edelstahlsorte erfordert die Kenntnis der tatsächlichen Lage der Verwendung und der Umgebungsbedingungen. In Bezug auf die Auswahl der Materialien hat sich die austenitische rostfreie Stahlgüte 316/316L als eine sehr beliebte Wahl für Anwendungen in der Architektur an verschiedenen Orten erwiesen. Er ist aber nicht immer für anspruchsvolle Umgebungen, wie maritimen Umgebungen im Mittleren Osten, geeignet. In solchen Fällen ist die Verwendung eines höheren Legierungsgrads oft in Kombination mit einer guten Oberflächenbeschaffenheit und etablierten Reinigungsprogrammen erforderlich, um unberührte Oberflächen aufrecht zu erhalten.

Das Hauptziel dieser Arbeit ist es, Informationen über die atmosphärische Korrosionsbeständigkeit aus einer Anzahl von nichtrostenden Stählen im Mittleren Osten in einer maritimen Umgebung zu präsentieren. Die Ergebnisse werden im Hinblick auf die Faktoren, die die atmosphärische Korrosion von rostfreiem Stahl beeinflussen, wie z. B. Legierungselement, Oberflächenrauhigkeit, Oberflächenbehandlung und Mikroklima, analysiert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Asami, K.; Hashimoto, K.: Importance of Initial Surface Film in the Degradation of Stainless Steels by Atmospheric Exposure Corrosion Science, 45 (2003), pp 2263–2283

    Article  Google Scholar 

  2. ASTM G150-99, Standard Test Method for Electrochemical Critical Pitting Temperature Testing of Stainless Steels, ASTM International, West Conshohocken, PA, 2010

  3. ASTM G48-03, Standard Test Methods for Pitting and Crevice Corrosion Resistance of Stainless Steels and Related Alloys by Use of Ferric Chloride Solution, ASTM International, West Conshohocken, PA, 2003

  4. ASTM G50-10, Standard Practice for Conducting Atmospheric Corrosion Tests on Metals, ASTM International, West Conshohocken, PA, 2015

  5. ASTM GI–90, Practice for Preparing, Cleaning and Evaluating Corrosion Test Specimens, ASTM, Philadelphia, PA, USA, 1990

  6. Baroux, B: Further Insights on the Pitting Corrosion of Stainless Steels. In: Marcus P, Oudar J, editors. Corrosion Mechanisms in Theory and Practice. New York: Marcel Dekker, 1995

    Google Scholar 

  7. Burkert, A.; Lehmann, J.; Burker, A.; Mietz, J; Gumpel, P.: Technical and Economical Stainless Steel Alternatives for Civil Engineering Applications, Mater Corros., 65 (2014), pp 1080–1095

  8. Duplex Stainless Steel in Storage Tank (DUPLEXTANK), Project carried out with financial grant of the Research Programme of the Research Fund for Coal and Steel, RFSR-CT-2009-0025, 2009–2012

  9. EN 10088-2- Standard-Stainless Steels-Part 2: Technical Delivery Conditions for Sheet/Plate and Strip of Corrosion Resisting Steels for General Purposes, 2005, European Committee Standardization in Brussels

  10. ISO 9223:2012—Corrosion of Metals and Alloys—Corrosivity of Atmospheres—Classification, Determination and Estimation, International Organization od Standardization, Geneva, Switzerland.

  11. Ito, S.; Ornata, H.; Murata, T.; Yabumoto, Y.: ASTM STP 965, Atmospheric Corrosion and Development of Stainless Steel Alloy Against Marine Environments, in: Dean, S. W.; Lee, T. S. (eds.): Degradation of Metals in the Atmosphere, West Conshohocken, PA: ASTM international, 1988 pp 68–77

  12. JIS G 0595, Rating Method of Rust and Strain of Atmospheric Corrosion for Stainless Steel, 2004

  13. Kearns, J.R.; Johnson, M.J.; Pavik, P.J: The Corrosion of Stainless Steels in the Atmosphere, ASTM STP 965, Atmospheric Corrosion and Development of Stainless Steel Alloy Against Marine Environments, in Degradation of Metals in the Atmosphere, in: Dean, S. W.; Lee, T. S. (eds.): Degradation of Metals in the Atmosphere, West Conshohocken, PA: ASTM international, 1988, pp 35–51

  14. Kirner, J. F.; Karwacki, E. J.; Cabrera, A. L.: Surface Analysis of Austenitic Stainless Steel Annealed in N2-H2 Atmospheres, Appl. Surf. Sci., 32 (1988), pp 239–245

    Article  Google Scholar 

  15. Lojewski, C.; Boillot, P.: Atmospheric Corrosion Resistance of Duplex Stainless Steels: Results of a Field Exposure Program, J. Peultier, Revue de Métallurgie, 108 (2011), pp 191–201

  16. Luo, H.; Li, X. G.; Dong C. F.; Xiao, K.: Degradation of Austenite Stainless Steel by Atmospheric Exposure in Tropical Marine Environment, Corros. Eng. Sci. Technol., 48 (2013), pp 212–229

    Google Scholar 

  17. Persson, A.; Lundström, P.; Larsson, T.; Petterson, R: Challenges in selecting stainless steels for long term performance in architectural applications in the Middle East, 14th Middle East Corrosion Conference & Exhibition, 2012

  18. Qvarfort, R.: New Electrochemical Cell for Pitting Corrosion Testing, Corrosion Science, 28 (1988), pp 135–140

    Article  Google Scholar 

  19. Sedriks, A. J.: Corrosion of Stainless Steels. New York: John Wiley & Sons, 1979

    Google Scholar 

  20. Syed, S.: Degradation of AISI304 Stainless Steel by Atmospheric Exposure in Saudi Arabia, Corros. Eng. Sci. Technol., 44 (2009), pp 297–303

    Article  Google Scholar 

  21. Wallinder, D.; Wallinder, I. O.; Leygraf, C.: A Study on Atmospheric Corrosion of 304 Stainless Steel in a Simulated Marine Atmosphere, Corrosion, 59 (2003), pp 220–227

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support given by the Corrosion department at Avesta Research Centre, Outokumpu Stainless AB, and thank the Dubai Electricity and Water Authority (DEWA) for providing the test site in Dubai.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukanya Hägg Mameng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mameng, S., Pettersson, R., Leygraf, C. et al. Atmospheric Corrosion Resistance of Stainless Steel: Results of a Field Exposure Program in the Middle-East. Berg Huettenmaenn Monatsh 161, 33–43 (2016). https://doi.org/10.1007/s00501-016-0447-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00501-016-0447-9

Keywords

Schlüsselwörter

Navigation