Skip to main content
Log in

Dynaphase: Online Calculation of Thermodynamic Properties during Continuous Casting

Dynaphase: Online Berechnung thermodynamischer Materialdaten während des Stranggießens

  • Originalarbeit
  • Published:
BHM Berg- und Hüttenmännische Monatshefte Aims and scope Submit manuscript

Abstract

The Siemens VAI software model DynaPhase calculates thermodynamic properties depending on the chemical analysis of steel. It can be used online together with Siemens VAI’s secondary cooling model Dynacs 3D, which is a unique feature. Offline it can be used to investigate the thermodynamic properties of steel grades and therefore supports the development of new grades. The core of DynaPhase is a substitutional solution model for the Gibbs free energy for calculating multi-component phase diagrams. The parameters of this model are determined by employing the CALPHAD approach. This model is combined with a microsegregation model to account for the interdendritic solidification process. New differential scanning calometry measurements of the Department of Metallurgy at the Mining University of Leoben have been used to extend the DynaPhase database for high Al or Si concentrations. This paper shows how important correct thermodynamic properties calculations with DynaPhase are, for controlling the secondary cooling system in continuous casting.

Zusammenfassung

DynaPhase ist ein VAI Software Modell zur Berechnung von thermodynamischen Eigenschaften in Abhängigkeit von der chemischen Analyse der Stahlgüte. Es kann zusammen mit dem VAI Sekundärkühlungsmodell Dynacs 3D online eingesetzt werden, was ein Alleinstellungsmerkmal darstellt. Offline kann es zum Untersuchen der thermodynamischen Eigenschaften beliebiger Stahlzusammensetzungen herangezogen werden und unterstützt somit die Entwicklung neuer Stahlgüten. Das Kernstück von DynaPhase ist ein „substitutional solution“ Modell zur Beschreibung der freien Gibbs Energien der verschiedenen Multikomponenten-Phasen. Die Parameter dieses Modells werden mit Hilfe des CALPHAD Ansatzes bestimmt. Dieses Modell ist mit einem Mikroseigerungsmodell gekoppelt, um die interdentritische Erstarrung des Stahls zu beschreiben. Neue differential scanning calometry Messungen des Instituts für Metallurgie der Montanuniversität in Leoben wurden genutzt, um die Datenbank von DynaPhase für Stahlgüten mit hohem Silizium oder Aluminium Gehalt zu erweitern. Im vorliegenden Beitrag soll anhand eines Beispiels gezeigt werden, wie wichtig die korrekte Berechnung der thermodynamischen Eigenschaften mit DynaPhase für die Kontrolle der Sekundärkühlung im Strangguss ist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dittenberger, K.; Morwald, K.; Hohenbichler, G.; Feischl, U.: DYNACS Cooling Model-Features and Operational Results, Proc. VAI 7th International Continuous Casting Conference, Linz, Austria, 1996, pp 44.1–44.6

  2. Mörwald, K.; Stiftinger, M.; Reichetseder, F.; Resch, H.; Eichinger, A.: Design and Dynamic Control of Secondary Cooling Systems for Slab Casters, AISE, 2002

  3. Chimani, C.; Watzinger, J.; Shan, G.; Resch, H.: Metallurgical strand treatment for direct hot charging, CCC, Linz, Austria, 2000, no. 55, pp 1–7

  4. Resch, H.: Precipitation modeling: A tool for predicting cracks and quality, CCC, Linz, Austria, 2000, no.54, pp 1–5

  5. Thalhammer, M.; Federspiel, F.; Mörwald, K.; Hödl, H.: Operational and Economic Benefits of VAI SMART/ASTC, Metallurgical, AISE Mini Expo, 2002

  6. Ilie, S.; Fuchs, R.; Etzeldorfer, E.; Chimani, C.; Mörwald, K.: Slab quality improvement through soft reduction technology, CCC, Linz, 2008, no.5.5, p 1–7

  7. Morton, J.; Skrube, S.; Shenn, J.: Application of DynaGap Soft Reduction® to High-Quality Blooms, AISTech, Indianapolis, Indiana, 2011, pp 1549–1556

  8. Hauser, K.; Dittenberger, K.; Hahn, S.; Chimani, C.; Fürst, C.; Ilie, S.; Lindenberger, S.: Dynamic 3D Heat Transfer Simulation of Continuous Casting, ECCC, Riccione, Italy, 2008

  9. Dittenberger, K.; Hahn, S.; Hauser, K.; Chimani, C.; Ilie, S.; Lindenberger, L.: Dynamic 3D heat transfer simulation of continuous casting, International Journal of Cast Metals Research, 22 (2009), no. 1–4, pp 115–118

    Google Scholar 

  10. Ramstorfer, F.; Dittenberger, K.; Hauser, K.; Hahn, S.: Dynacs 3D—The new dimension in secondary cooling for slab casters, ECCC, Düsseldorf, Germany, 2011, session 12/paper 5

  11. Laitinen, E.; Neittaanmäki, P.: On numerical simulation of the continuous casting process. Journal of Engineering Mathematics, 22 (1988), pp 335–354

    Article  Google Scholar 

  12. Louhenkilpi, S.; Laitinen, E.; Nieminen, R.: Real-time simulation in continuous casting of steel, Metallurgical Transactions B, Vol. 24B (1993), pp 685–693

    Article  Google Scholar 

  13. Camisani-Calzolari, F.; Craig, I.; Pistorius, P.: Speed disturbance compensation in the secondary cooling zone in continuous casting, ISIJ International, Vol. 40 (2000), no. 5, pp 469–477

    Article  Google Scholar 

  14. Miettinen, J.: Mathematical simulation of interdendritic solidification of low-Alloyed and stainless steels, Metall. Trans. A, Vol. 23A (1992), pp 1155–1170

    Article  Google Scholar 

  15. Miettinen, J.: Calculation of solidification-related thermophysical properties for steels, Metall. Trans. B, Vol. 28B (1997), pp 281–297B

    Article  Google Scholar 

  16. Miettinen, J.: Mathematical Simulation of Interdendritic Solidification of Low-alloyed and Stainless Steels, PhD thesis, Laboratory of Metallurgy, PhD thesis, Helsinki University of Technology, 1992

  17. Hillert, M.: Hardenability concepts with application to steel, The Metallurgical Society of AIME, edited by D.V. Doane and J.S. Kirkaldy, Warrendale, PA, 1978, pp 5–27

  18. Presoly, P.; Pierer, R.; Bernhard, C.: Identification of Defect Prone Peritectic Steel Grades by Analyzing High Temperature Phase Transformations, J. Metall. Trans. A, Vol. 44A (2013), 12, pp 5377–5388

    Article  Google Scholar 

  19. Presoly, P.; Pierer, R.; Bernhard, C.: Linking up of HT-LSCM and DSC measurements to characterize phase diagrams of steels, IOP Conference Series (MCWASP XIII)—Materials Science and Engineering 33 (2012), No. 012064

  20. FactSage, http://www.factsage.com/ (01.12.2007)

  21. Thermo-Calc Software, http://www.thermocalc.com/ (01.06.2008)

  22. Miettinen, J.: Mathematical quality indexes for solidifying steels, Internal Report, Casim Consulting Oy, Espoo, (2012)

Download references

Acknowledgements

Financial support by the Austrian Federal Government (in particular by the Bundesministerium für Verkehr, Innovation and Technologie, and the Bundesministerium für Wirtschaft, Familie und Jugend) represented by Österreichische Forschungsförderungsgesellschaft mbH and the Styrian and the Tyrolean Provincial Governments, represented by Steirische Wirtschaftsförderungsgesellschaft mbH and Standortagentur Tirol, within the framework of the COMET Funding Program is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Hahn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hahn, S., Schaden, T. Dynaphase: Online Calculation of Thermodynamic Properties during Continuous Casting. Berg Huettenmaenn Monatsh 159, 438–446 (2014). https://doi.org/10.1007/s00501-014-0305-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00501-014-0305-6

Keywords

Schlüsselwörter

Navigation