Skip to main content
Log in

Work Hardening Behavior of Fe-0.1 C Dual Phase Steel

Kaltverfestigungsverhalten von Fe-0.1 C 2 Phasen-Stählen

  • Originalarbeit
  • Published:
BHM Berg- und Hüttenmännische Monatshefte Aims and scope Submit manuscript

Zusammenfassung

Der Verfestigungsexponent (n) in der Spannungs- Dehnungsbeziehung von Metallen und Legierungen ist ein Indikator ihrer Streckbarkeit während der Verformung. Je größer der n-Faktor, desto mehr Material kann verformt werden bevor der Prozess instabil wird. Das Material kann weiter gestreckt werden, bevor eine Einschnürung beginnt. Dieser Beitrag untersucht das Kaltverfestigungsverhalten von 2 Phase-Stählen. In einer Versuchsserie von DP-Stählen wurden unterschiedliche Ferrit- und Martensitverhältnisse (Vm) durch spezifi- sche Wärmebehandlungen eingestellt. Das Verfestigungsverhalten wurde mit Hilfe der Holloman Analyse bestimmt. Die Ergebnisse zeigen, dass in DP-Stählen mit weniger als 50 % Vm die Verfestigung in einem einstufigen Prozess stattfindet. Mit steigenden Vm wurde ein mehrstufiger Verfestigungsprozess beobachtet.

Summary

The strain hardening exponent (n) in the stress strain relationship of metals and alloys is an indicator of their stretchability during press forming operations. The larger the n value, the more the material can deform before instability, and the material can be stretched further before necking starts. This paper aims to investigate work hardening behavior of dual phase steels. A series of dual-phase (DP) steels containing ferrite and martensite with different volume fractions of martensite (Vm) were produced by intercritical heat treatment. Work hardening behavior was analyzed in terms of Holloman analysis. Results showed that in DP steels with less than %50 Vm, the work hardening took place in one stage and the work hardening exponent increased with increasing Vm. By increasing the volume fraction of martensite (Vm>%50) more than one stage will be observed in the Holloman analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Oikawa, H., Murayama G., Sakiyama T., Takahashi Y., and Ishikawa T.: Resistance Spot Weldability of High Strength Steel (HSS) Sheets for Automobiles, Nippon Steel Technical Report., Nr.95, (2007), pp. 39–45

    Google Scholar 

  • Gould J. E., Khurana S. P., and Li T.: Predictions of microstructures when welding automotive advanced high-strength steels. Weld J., Volume 86 (2006), pp. 111s-116s

    Google Scholar 

  • Bag A., Ray K., and Dwarakadasa E.S.: Influence of martensite content and morphology on the toughness and fatigue behavior of high-martensite dual-phase steels. Metallurgical and Materials Transactions A, Volume 32A (2001), pp. 2207–2217

    Article  Google Scholar 

  • Rashid M.S.: Formable HSLA and dual-phase steels. in Proceedings of the Metallurgical Society of AIME", Michigan, USA, 1979

  • Movahed P., Kolahgar S., Marashi S.P.H., Pouranvari M., and Parvin N.: The effect of intercritical heat treatment temperature on the tensile properties and work hardening behavior of ferrite-martensite dual phase steel sheets. Materials Science and Engineering A, Volume 518 (2009), pp. 1–6

    Article  Google Scholar 

  • Farabi N., Chen D.L., and Zhou Y.: Microstructure and mechanical properties of laser welded dissimilar DP600/DP980 dual-phase steel joints, Journal of Alloys and Compounds, Volume 509 (2011), pp. 982–989

    Article  Google Scholar 

  • Kumar A., Singh S.B., and Ray K. k.: Influence of bainite/martensitecontent on the tensile properties of low carbon dual-phase steels. Materials Science and Engineering A, Materials Science and Engineering A, Volume 474(2008), pp. 270–282

    Article  Google Scholar 

  • Delincea M., Brechetb Y., Emburyc J.D., Geersd M.G.D., Jacquesa P.J., and Pardoena T.: Structure-property optimization of ultrafinegrained dual-phase steels using a microstructure-based strain hardening model. Acta Materialia, Volume 55 (2007), pp. 2337–2350

    Article  Google Scholar 

  • Kunitake T. and Ohtani H.: Tetsu-to-Hagane, Volume 50 (1964), p. 666

    Google Scholar 

  • Hollomon J.H.: Tensile Deformation. Transaction of AIME, Volume 162 (1945), pp. 268–290

    Google Scholar 

  • Akbarpour M.R., and Ekrami A.: Effect of ferrite volume fraction on work hardening behavior of high bainite dual phase (DP) steels. Materials Sciene and Engineering A, Volume 477(2008), pp. 306–310

    Article  Google Scholar 

  • Lian J., Jiang Z., and Liu J.: Theoretical model for the tensile work hardening behaviour of dual-phase steel. Materials Science and Engineering A, Volume 147 (1991), pp. 55–65

    Article  Google Scholar 

  • Mazinani M., and Poole W. J.: Effect of martensite plasticity on the deformation behavior of a low-carbon dual-phase steel. Metallurgical and Materials Transactions A, Volume 38(2007), pp. 328–339

    Article  Google Scholar 

  • Cribb W.R., and Rigsbee J.M., in: Kot R.A., and Morris J.W. (Eds.), Structure and Properties of Dual-Phase Steels, AIME, New York, NY, (1979), pp. 91–117

    Google Scholar 

  • Spiech G.R., and Miller R.L., in: Kot R.A., J.W. Morris (Eds.), Structure and Properties of Dual-Phase Steels, AIME, NewYork,NY, (1979), pp. 145–182

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Pouranvari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pouranvari, M. Work Hardening Behavior of Fe-0.1 C Dual Phase Steel. Berg Huettenmaenn Monatsh 157, 44–47 (2012). https://doi.org/10.1007/s00501-011-0036-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00501-011-0036-x

Keywords

Navigation