Skip to main content
Log in

Coupled Numerical Analysis of Quenching Process of Internal Combustion Engine Cylinder Head

Gekoppelte numerische Analyse des Abschreckprozesses von Zylinderköpfen für Verbrennungsmotoren

  • Originalartikel
  • Published:
BHM Berg- und Hüttenmännische Monatshefte Aims and scope Submit manuscript

Zusammenfassung

Dieser Beitrag beschreibt eine kürzlich entwickelte Methode zur Simulation des Abschreckens von wärmebehandelten Zylinderköpfen von Verbrennungsmotoren unter Verwendung der kommerziellen Computational Fluid Dynamics (CFD)-Software AVL FIRE® und der Strukturanalysesoftware ABAQUS. Das Eintauchen eines direkt aus der Wärmebehandlung kommenden Festkörpers in ein Kühlbad führt zum Sieden des flüssigen Kühlmittels und in dessen Folge zum Phasenübergang in den gasförmigen Zustand. Diese Vorgänge werden mit dem Eulerischen Mehrphasenmodell simuliert. Massenübergangseffekte werden sowohl für die Phase des Filmsiedens als auch die des Blasensiedens betrachtet. Details zur numerischen Simulation finden sich in1,2. Separate Berechnungsmodelle für den abzuschreckenden Festkörper und das Kühlbad werden über das AVL Code Coupling Interface (ACCI) miteinander gekoppelt. Die Software erlaubt dabei die Behandlung der Mehrphasenströmung im Bad als auch die simultane Berechnung der Temperatur im Festkörper. In dieser Veröffentlichung werden Berechnungsergebnisse des Abschreckens eines 4-Zylinder-Ottomotors gezeigt. Strömungsmerkmale wie Dampftaschenbildung, Blasenansammlungen und deren Ablagerung werden vorausberechnet. Ein Vergleich von gemessenen und berechneten Temperaturen in verschiedenen Beobachtungspunkten zeigt sehr gute Übereinstimmung für zwei untersuchte Eintauchrichtungen. Signifikante Ungleichförmigkeit im Temperaturfeld der Struktur wurde beobachtet, was bedeutsam für den Aufbau der Restspannungen und die Ermüdung des abgeschreckten Bauteils ist. Das berechnete Temperaturfeld wurde vom volumenbasierenden CFD-Modell auf ein knotenbasierendes FEM-Modell übertragen. Darauf basierend wurden die Spannungen im Zylinderkopf sowie dessen Verformung berechnet.

Summary

The paper provides details about a newly developed method of coupled modelling procedure for the simulation of quenching process using a commercial Computational Fluid Dynamics (CFD) code AVL FIRE, followed by Finite Element Method (FEM) analysis to predict the stresses within the structure using ABAQUS. Boiling mass transfer process is triggered by submerging of a heated solid part into a subcooled liquid bath. As a result, two-phase flow with boiling phase change is handled using the Eulerian two-fluid method. Mass transfer effects are considered for both film and nucleate boiling regime. Separate computational domains constructed for the quenched solid part and the liquid (quenchant) domain are numerically coupled at the interface using the AVL-Code-Coupling-Interface (ACCI) feature. The program handles multiphase flow dynamics in the liquid domain in conjunction with the temperature evolution in the solid region in coupled fashion. The paper features numerical simulation results of a real cylinder head of a four cylinder gasoline engine. Comparison between measured and computed temperatures at different monitoring positions shows very good agreement for two cylinder head orientations. Significant nonuniformity in temperature distribution within the structure was observed, which is of great importance in evaluating residual stresses and fatigue patterns within the quenched object. The temperature field was mapped from volume-based computational grid used in CFD analysis onto a node-based grid used in FEM. Based on temperature distribution, the stresses and deformation within the cylinder head were calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Allison, J., M. Li, C. Wolverton, and X. Su: Virtual Aluminum Castings: An Industrial Application of ICME, JOM, November 2006

  • Srinivasan, V., K. Moon, D. Greif, D.M. Wang, and M. Kim: Numerical Simulation of Immersion Quench Cooling Process: Part I, Proceedings in the International Mechanical Engineering Congress and Exposition, IMECE2008, Paper no: IMECE2008–69280, Boston, Massachusetts, USA, 2008

  • Srinivasan, V., K. Moon, D. Greif, D.M. Wang, and M. Kim: Numerical Simulation of Immersion Quench Cooling Process: Part II, Proceedings in the International Mechanical Engineering Congress and Exposition, IMECE2008, Paper no: IMECE2008–69281, Boston, Massachusetts, USA, 2008

  • Edelbauer, W., D. Suzzi, P. Sampl, R. Tatschl, C. Krueger, and B. Weigand: New concept for on-line coupling of 3D Eulerian and Lagrangian Approaches in Engine Simulations, Proceedings in the International Conference for Liquid Atomization and Spray Systems – ICLASS2006, Paper No: ICLASS06–234, Kyoto, Japan, 2006

  • AVL FIRE/SWIFT Manual, 2007

  • Ishii, M.: Thermo Fluid Dynamic Theory of Two-Phase Flow, Eyrolles, Paris, 1975

  • Lahey Jr., R.T., and D.A. Drew: An Analysis of Two-Phase Flow and Heat Transfer Using a Multidimensional, Multi-Field, Two-Fluid Computational Fluid Dynamics (CFD) Model, Japan/US Seminar on Two-Phase Flow Dynamics, Santa Barbara, California, 2000

  • Drew, D.A., and S.L. Passman: Theory of Multicomponent Fluids, Springer, New York, 1998

    Google Scholar 

  • Wang, D.M., A. Alajbegovic, X.M. Su, and J. Jan: Numerical Modelling of Quenching Cooling Using Eulerian Two-Fluid Method, Proceedings of ASME International Mechanical Engineering Congress & Exposition, Nov. 17–22, 2002, New Orleans, Louisiana, 2000

  • Bromely, L.A.: Heat transfer in stable film boiling. Chem. Eng. Prog. 58: 67–72, 1950

    Google Scholar 

  • Dhir, V. K.: Boiling Heat Transfer, Annu. Rev. Fluid Mech., Vol. 30, 1998, pp.365–401

    Article  Google Scholar 

  • Gogonin, I., and S. Kutateladze: Critical Heat Flux as a Function of Heater Size for a Liquid Boiling in a Large Enclosure, J. Engg. Phy. Thermophysics, Vol. 33, No. 5 (1977) pp. 1286–1289

    Google Scholar 

  • Kandlikar, S.G.: Critical Heat Flux in Subcooled Flow Boiling – An Assessment of Current Understanding and Future Directions for Research, Multiphase Science Tech., Vol. 13, No. 3, 2001, pp.207–232

    Google Scholar 

  • Hsu, Y.Y.: A Review on Film Boiling, NASA Technical Mem., NASA TM X-52837, 1970

  • Dougall, R.S.: Film Boiling on the Inside of Vertical Tubes With Upward Flow of the Fluid at Low Qualities, Ph.D Thesis, Massachusetts Institute of Technology, 1963. – 16

  • Wang, D.M., A. Alajbegovic, X.M. Su, and J. Jan: Numerical simulation of water quenching process of an engine cylinder head, Proceedings of ASME FEDSM 2003, 4th ASME JSME Joint Fluids Engineering Conference, Honolulu, Hawaii, USA, July 6–10, 2003

  • Jeschar, R., E. Specht, and C. Kohler: Heat Transfer during Cooling of Heated Metallic Objects with Evaporating Liquids, Theory and Technology in Quenching, Springer, 1992

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greif, D., Kovacic, Z., Srinivasan, V. et al. Coupled Numerical Analysis of Quenching Process of Internal Combustion Engine Cylinder Head. Berg Huettenmaenn Monatsh 154, 509 (2009). https://doi.org/10.1007/s00501-009-0514-6

Download citation

  • DOI: https://doi.org/10.1007/s00501-009-0514-6

Keywords

Navigation