Skip to main content
Log in

Experimental Simulation of the Solidification of Steel at Higher Cooling Rates

Experimentelle Simulation der Erstarrung von Stahl bei hohen Kühlraten

  • Originalartikel
  • Published:
BHM Berg- und Hüttenmännische Monatshefte Aims and scope Submit manuscript

Zusammenfassung

Der konventionelle Stranggießprozess ist der dominierende Prozess für das Vergießen herkömmlicher Kohlenstoffstähle. Die Erstarrung im Stranggießprozess, vor allem beim Brammenstranggießen, ist durch eine moderate Wärmeabfuhr und entsprechend geringe Erstarrungsgeschwindigkeiten und Kühlraten gekennzeichnet. Die Kopplung des Gieß- und Walzprozesses oder das direkte Gießen eines Produktes verlangt die Erhöhung der Gießgeschwindigkeit und deshalb auch die Erhöhung der Wärmeabfuhr. Da die Phasenumwandlungen, die beim konventionellen Prozess während des Abkühlens und Wiedererwärmens auftreten, beim gekoppelten Gießwalzen fehlen, kommt der Erstarrungsstruktur auch eine größere Bedeutung für den nachfolgenden Walzprozess zu. Am Christian-Doppler-Labor für Metallurgische Grundlagen von Stranggießen wurde in Zusammenarbeit mit Siemens-VAI Metals Technologies ein Versuchsstand zur Nachbildung der beschleunigten Erstarrung entwickelt und umgesetzt. Das Experiment beruht auf einem Tauchversuch in einem Vakuuminduktionsofen unter kontrollierter Gasatmosphäre. Die Apparatur wurde vor kurzem mit einem Pyrometer ausgestattet, um die Temperatur der erstarrten Proben während der Abkühlung bestimmen zu können. Auch das Nachstellen bestimmter Temperaturzyklen ist nunmehr möglich. Damit wurde es möglich, den thermischen Zyklus von Prozessen mit beschleunigter Erstarrung nachzuempfinden und die Auswirkung auf die Mikrostruktur und das Gefüge der Proben bei Raumtemperatur zu beurteilen. Abschließend wird exemplarisch ein Ergebnis für einen Kohlenstoffstahl vorgestellt.

Summary

Today, continuous casting is the common technology for casting commercial steel grades. Conventional casting processes, like slab casting, are characterised by a moderate heat withdrawal and a rather low solidification velocity and cooling rate. Linking the casting and the rolling process demands a higher casting velocity, an increased heat withdrawal and thus, a higher local cooling rate. The absence of phase transformations during cooling and reheating before the rolling process makes the solidification microstructure more important for the behaviour of the steel during rolling and for the final product properties. Over several years the Christian Doppler Laboratory for "Metallurgical Fundamentals of Continuous Casting Processes" has developed an experimental setup for the simulation of solidification at higher cooling rates. The experiment is based on the principle of a dipping test under inert gas atmosphere inside a vacuum induction furnace. Recently, this apparatus has been equipped with a pyrometer in order to measure the temperature of the solidified sample during the subsequent cooling phase and also with a furnace in order to simulate different cooling and heat treatment strategies. Thus, it is possible to reproduce solidification and subsequent cooling of the cast material in casting-rolling processes and to characterise the microstructure and the mechanical properties of the solidified samples. The present work will give an overview on heat transfer in conventional casting processes, present a laboratory scale simulation of solidification a higher cooling rate, touch some aspects like the numerical simulation of the experiment and conclude with some results and an outlook on further planned work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Steel Statistical Yearbook 2008, published by the Worldsteel Committee for Economic Studies, Brussels, 2009

  • Wolf, M.M.: Mould heat transfer and lubrication control – two major functions of caster productivity and quality assurance. 13th Process Technology Conference, Nashville, USA (2–5 Apr. 1995), 99–117

  • Hecht, M., Z. Zhu, H. Lachmund and K.-H. Tacke: Mould investigations on a thick slab caster. Stahl und Eisen 125 (2005), No. 11, 107–S116

    Google Scholar 

  • Xia, G., H.P. Narzt, C. Fuerst, K. Moerwald, J. Moertl, P. Reisinger and L. Lindenberger: Investigations of mould thermal behaviour by means of mould instrumentation. 4th European Continuous Casting Conference, Birmingham, GB, (14–16 October 2002), 573–582

  • Wuennenberg, K.: Possibilities and limits of heat transfer in cc moulds. Stahl und Eisen 120 (2000), No. 7, 29–35

    Google Scholar 

  • Rauter, W., M. Erker, W. Brandl, S. Michelic and C. Bernhard: Heat transfer in a round CC mould: measurement, modelling and validation. 6th European Continuous Casting Conference, Riccione, I, (4–6 June 2008)

  • Chow, C. and I.V. Samarasekera: High speed continuous casting of steel billets. Part I: General Overview. Ironmaking and Steelmaking 29 (2002), No. 1, 53–60

    Article  Google Scholar 

  • Chow, C., I.V. Samarasekera, B.N. Walker and G. Lockhart: High speed continuous casting of steel billets. Part II: Mould heat transfer and mould design. Ironmaking and Steelmaking 29 (2002), No. 1, 61–69

    Article  Google Scholar 

  • Kapaj, N., F. Vacciet, M. Pavlicevic, A. Poloni and M. Fornasier: Some technological aspects of thin slab casting process at very high casting speed. AISTech 2006, Cleveland, USA (1–4 May 2006)

  • Santillana, B., B.G. Thomas, A. Hamoen, L.C. Hibbeler, A. Kamperman and W. van der Knoop: Investigating mould heat transfer in thin slab casting with CON1D. AISTech 2007, Indianapolis, USA (7–10 May 2007)

  • Kromhout, J.A., S. Melzer, E.W. Zinngrebe, A.A. Kampermann and R. Boom: Mould powder requirements for high-speed casting. Steel Research int. 79 (2008), No. 2, 143–148

    Google Scholar 

  • Hara, M., H. Kikuchi, M. Hanao, M. Kawamoto, T. Murakami and T. Watanabe: High speed continuous casting technologies of peritectic medium thickness steel slabs. La Revue de Métallurgie-CIT (2002), No. 4, 367–372

    Article  Google Scholar 

  • Prichart, L.C., S. Kramer, C. Klein and J. Muller: First operational results at the new SeverCorr mini-mill, USA, Metallurgical Plant and Technology International 31 (2008), No. 4, 52–61

    Google Scholar 

  • Grosjean, J.C., J.L. Jacquot, J.M. Damasse, H. Litterscheid, D. Senk and W. Schmitz: Thin strip casting experiments at IRSID and Thyssen Stahl AG. Iron- and Steelmaker 21 (1993), No. 8, 27–32

    Google Scholar 

  • Tavares, R.P., M. Isac and R.I.L. Guthrie: Roll-strip interfacial heat fluxes in twin-roll casting of low-carbon steels and their effects on strip microstructure. ISIJ International 38 (1998), No. 12, 1353–1361

    Article  Google Scholar 

  • Bernhard, C., H. Hiebler and M. Wolf: How fast can we cast? Ironmaking and Steelmaking 27 (2000), No. 6, 450–454

    Article  Google Scholar 

  • Bernhard, C., M. Wolf and H. Hiebler: High speed casting versus shell strength. BHM 147 (2002), No. 3, 43–47

    Google Scholar 

  • Blejde, W., R. Mahapatra and H. Fukase: Development of low carbon thin strip production capability at Project "M". Iron- and Steelmaker 27 (2000), No. 4, 29–33

    Google Scholar 

  • Mukunthan, K., L. Strezov, R. Mahapatra and W. Blejde: Evolution of microstructures and product opportunities in low carbon steel strip casting. Canadian Metallurgical Quarterly 40 (2001), No. 4, 523–532

    Google Scholar 

  • Linzer, B.: Experimental simulation of microcrack formation in the thin strip casting of carbon steels. Presentation at the second meeting of the scientific committee of the Christian Doppler Laboratory for Metallurgical Fundamentals of Continuous Casting Processes, Leoben (11. November 2006)

  • Linzer, B., C. Bernhard und G. Hohenbichler: Experimental simulation of strip casting. BHM 149 (2004), 107–111

    Google Scholar 

  • Bernhard, C., H. Hiebler und M. Wolf: Simulation of Shell Strength Properties by the SSCT Test. Trans. ISIJ 36 (1996), Supplement, 163–166

    Article  Google Scholar 

  • Blazek, K.: Mould heat transfer during continuous casting. Iron- and Steelmaker 14 (1987), No. 11, 42–44

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Linzer, B., Hohenbichler, G., Bragin, S. et al. Experimental Simulation of the Solidification of Steel at Higher Cooling Rates. Berg Huettenmaenn Monatsh 154, 498 (2009). https://doi.org/10.1007/s00501-009-0511-9

Download citation

  • DOI: https://doi.org/10.1007/s00501-009-0511-9

Keywords

Navigation