Skip to main content
Log in

Differential evolution algorithms with novel mutations, adaptive parameters, and Weibull flight operator

  • Optimization
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Differential evolution (DE) is among the best evolutionary algorithms for global optimization. However, the basic DE has several shortcomings, like the slow convergence speed, and it is more likely to be stuck at local optima. Additionally, DE's performance is sensitive to its mutation strategies and control parameters for mutation and crossover. In this scope, we present in this paper three mechanisms to overcome DE limitations. First, two novel mutations called DE/mean-current/2 and DE/best-mean-current/2 are proposed and integrated in the DE algorithm, and they have both exploration ability and exploitation trend. On the other hand, to avoid being trapped in local minima of hard functions, a new exploration operator has been proposed called Weibull flight based on the Weibull distribution. Finally, new adapted control parameters based on the Weibull distribution are integrated. These parameters contribute to the optimization process by adjusting mutation scale and alleviating the parameter setting problem often encountered in various metaheuristics. The efficacy of the proposed algorithms called meanDE, MDEW, AMDE, and AMDEW is validated through intensive experimentations using classical tests, some challenging tests, the CEC2017, CEC2020, the most recent CEC2022, four constraint engineering problems, and the data clustering problem. Moreover, comparisons with several popular, recent, and high-performance optimization algorithms show a high effectiveness of the proposed algorithms in locating the optimal or near-optimal solutions with higher efficiency. The experiments clearly indicate the effectiveness of the new mutations compared to the standard DE mutations. Moreover, the proposed Weibull flight has a great capacity to deal with the hard composition functions of CEC benchmarks. Finally, the use of adapted control parameters for the mutation scale helps overcome the parameter setting problem commonly encountered in various metaheuristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

Enquiries about data availability should be directed to the author.

Code availability

The code is available at: https://www.mathworks.com/matlabcentral/fileexchange/117725-differential-evolution-algorithms-with-novel-mutations?s_tid=srchtitle

References

  • Abd EM, Ibrahim A (2021) An improved Henry gas solubility optimization algorithm for task scheduling in cloud computing. Artif Intell Rev 54:3599–3637

    Google Scholar 

  • Abdel-Basset M, et al. (2023) Exponential distribution optimizer (EDO): a novel math-inspired algorithm for global optimization and engineering problems. Artif Intell Rev: 1–72

  • Abdulnassar AA, Latha RN (2023) Performance analysis of Kmeans with modified initial centroid selection algorithms and developed Kmeans9+ model." Measur Sens: 100666

  • Ahmad MF, et al. (2021) Differential evolution: a recent review based on state-of-the-art works. Alexand Eng J

  • Ahmadianfar I et al (2021) RUN beyond the metaphor: an efficient optimization algorithm based on Runge Kutta method. Expert Syst Appl 181:115079

    Google Scholar 

  • Ahmadianfar I et al (2022) INFO: an efficient optimization algorithm based on weighted mean of vectors. Expert Syst Appl 195:116516

    Google Scholar 

  • Alabool HM et al (2021) Harris hawks optimization: a comprehensive review of recent variants and applications. Neural Comput Appl 33:8939–8980

    Google Scholar 

  • Ali MZ, Awad NH, Suganthan PN (2015) Multi-population differential evolution with balanced ensemble of mutation strategies for large-scale global optimization. Appl Soft Comput 33:304–327

    Google Scholar 

  • Almalki SJ, Saralees N (2014) Modifications of the Weibull distribution: a review. Reliab Eng Syst Saf 124:32–55

    Google Scholar 

  • Aragón VS, Susana CE, Carlos ACC (2010) A modified version of a T-Cell Algorithm for constrained optimization problems. Int J Numer Meth Eng 84(3):351–378

    Google Scholar 

  • Awad N, et al. (2016) Problem definitions and evaluation criteria for the CEC 2017 special session and competition on single objective bound constrained real-parameter numerical optimization: technical report. Nanyang Technological University, Singapore

  • Bernardino HS, et al. (2008) A new hybrid AIS-GA for constrained optimization problems in mechanical engineering. In: 2008 IEEE congress on evolutionary computation (IEEE world congress on computational intelligence). IEEE

  • Chakraborty S et al (2021) COVID-19 X-ray image segmentation by modified whale optimization algorithm with population reduction. Comput Biol Med 139:104984

    Google Scholar 

  • Chen X et al (2017) Biogeography-based learning particle swarm optimization. Soft Comput 21(24):7519–7541

    Google Scholar 

  • Chen H et al (2023) Slime mould algorithm: a comprehensive review of recent variants and applications. Int J Syst Sci 54(1):204–235

    Google Scholar 

  • Coello CAC, Becerra RL (2004) Efficient evolutionary optimization through the use of a cultural algorithm. Eng Optim 36:219–236

    Google Scholar 

  • Coello Coello CA (2000) Use of a self-adaptive penalty approach for engineering optimization problems. Comput Ind 41:113–127

    Google Scholar 

  • Cui L et al (2018) A novel differential evolution algorithm with a self-adaptation parameter control method by differential evolution. Soft Comput 22:6171–6190

    Google Scholar 

  • Dhiman G, Amandeep K (2019) STOA: a bio-inspired based optimization algorithm for industrial engineering problems. Eng Appl Artif Intell 82:148–174

    Google Scholar 

  • Dorigo M, Mauro B, Thomas S (2006) Ant colony optimization. IEEE Comput Intell Mag 1(4):28–39

    Google Scholar 

  • Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory MHS’95. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, IEEE, pp. 39–43

  • Ezugwu AE et al (2022) A comprehensive survey of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects. Eng Appl Artif Intell 110:104743

    Google Scholar 

  • Faramarzi A et al (2020) Equilibrium optimizer: a novel optimization algorithm. Knowl-Based Syst 191:105190

    Google Scholar 

  • Fontes DBMM, Homayouni SM, Gonçalves JF (2023) A hybrid particle swarm optimization and simulated annealing algorithm for the job shop scheduling problem with transport resources. Eur J Oper Res 306.3:1140–1157

    MathSciNet  Google Scholar 

  • Glover F (1990) Tabu search: a tutorial. Interfaces 20(4):74–94

    Google Scholar 

  • Hailong W, Zhongbo H, Yuqiu S, Qinghua S, Xuewen X (2018) Modified backtracking search optimization algorithm inspired by simulated annealing for constrained engineering optimization problems. In: Computational Intelligence and Neuroscience, vol. 2018, Article ID 9167414, pp 27

  • Hashim FA et al (2019) Henry gas solubility optimization: a novel physics-based algorithm. Fut Gen Comput Syst 101:646–667

    Google Scholar 

  • He Q, Wang L (2007) An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Eng Appl Artif Intell 20:89–99

    Google Scholar 

  • Heidari AA et al (2019) Harris hawks optimization: algorithm and applications. Fut Gen Comput Syst 97:849–872

    Google Scholar 

  • Holland JH (1992) Genetic algorithms. Sci Am 267(1):66–73

    Google Scholar 

  • Houssein EH, Saad MR, Hashim FA, Shaban H, Hassaballah M (2020) Lévy flight distribution: a new metaheuristic algorithm for solving engineering optimization problems. Eng Appl Artif Intell 94:103731

    Google Scholar 

  • Huang F, Wang L, He Q (2007) An effective co-evolutionary differential evolution for constrained optimization. Appl Math Comput 186:340–356

    MathSciNet  Google Scholar 

  • Karim B, Abdesslem L (2023) Data clustering tangent search algorithm. In: International Conference on Intelligent Systems & Pattern Recognition, pp.1–15

  • Kaveh A, Dadras A (2017) A novel meta-heuristic optimization algorithm: thermal exchange optimization. Adv Eng Softw 110:69–84

    Google Scholar 

  • Kaya E et al (2022) A review on the studies employing artificial bee colony algorithm to solve combinatorial optimization problems. Eng Appl Artif Intell 115:105311

    Google Scholar 

  • Kumar A, Misra R, Singh D (2017) Improving the local search capability of effective butterfly optimizer using covariance matrix adapted retreat phase. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 1835–1842

  • Kumar A, Price K, Mohamed A, Hadi A, Suganthan PN (2022) Problem definitions and evaluation criteria for the CEC 2022 special session and competition on single objective bound constrained numerical optimization; technical report. Nanyang Technological University, Singapore

  • Kvasov DE, Mukhametzhanov MS (2018) Metaheuristic vs deterministic global optimization algorithms: the univariate case. Appl Math Comput 318:245–259

    MathSciNet  Google Scholar 

  • Layeb A (2022a) Tangent search algorithm for solving optimization problems. Neural Comput Appl 34:8853–8884

    Google Scholar 

  • Layeb A (2022b) New hard benchmark functions for global optimization. arXiv preprint arXiv:2202.04606

  • Li S et al (2020) Slime mould algorithm: a new method for stochastic optimization. Fut Gen Comput Syst 111:300–323

    Google Scholar 

  • Liu H, Cai Z, Wang Y (2010) Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization. Appl Soft Comput 10(2):629–640

    Google Scholar 

  • Mezura-Montes E, Coello CAC (2008) An empirical study about the usefulness of evolution strategies to solve constrained optimization problems. Int J Gen Syst 37:443–473

    MathSciNet  Google Scholar 

  • Mirjalili S, Andrew L (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Google Scholar 

  • Mohamed AW, Suganthan PN (2018) Real-parameter unconstrained optimization based on enhanced fitness-adaptive differential evolution algorithm with novel mutation. Soft Comput 22(10):3215–3235

    Google Scholar 

  • Mohamed AW, Hadi AA, Mohamed AK (2021) Differential evolution mutations: taxonomy, comparison and convergence analysis. IEEE Access 9:68629–68662

    Google Scholar 

  • Mohamed AK, Mohamed AW (2019) Real-parameter unconstrained optimization based on enhanced AGDE algorithm. In: Machine Learning Paradigms: Theory and Application. Springer, pp 431–450.

  • Mohamed AW, et al. (2021) Gaining-sharing knowledge based algorithm with adaptive parameters hybrid with IMODE algorithm for solving CEC 2021 benchmark problems. In: 2021 IEEE Congress on Evolutionary Computation (CEC). IEEE

  • Mohammadi-Balani A et al (2021) Golden eagle optimizer: a nature-inspired metaheuristic algorithm. Comput Ind Eng 152:107050

    Google Scholar 

  • Montes E, Ocana B (2008) Bacterial foraging for engineering design problems: preliminary results. In: 4th Mex. Congr. Evol. Comput. COMCEV’2008, Mexico, pp. 33–38

  • Nasiri J, Farzin MK (2018) A whale optimization algorithm (WOA) approach for clustering. Cogent Math Stat 5(1):1483565

    MathSciNet  Google Scholar 

  • Neggaz N, Essam HH, Kashif H (2020) An efficient henry gas solubility optimization for feature selection. Expert Syst Appl 152:113364

    Google Scholar 

  • Opara K, Arabas J (2018) Comparison of mutation strategies in differential evolution—a probabilistic perspective. Swarm Evol Comput 39:53–69

    Google Scholar 

  • Pachung P, Jagdish CB (2022) An improved tangent search algorithm. MethodsX 9:101839

    Google Scholar 

  • Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4):341–359

    MathSciNet  Google Scholar 

  • Sun G, Lan Y, Zhao R (2019) Differential evolution with Gaussian mutation and dynamic parameter adjustment. Soft Comput 23(5):1615–1642

    Google Scholar 

  • Sun G, Yang B, Yang Z, Xu G (2020) An adaptive differential evolution with combined strategy for global numerical optimization. Soft Comput 24:6277–6296

    Google Scholar 

  • Tanabe, R, Alex SF (2014) Improving the search performance of SHADE using linear population size reduction. In: 2014 IEEE congress on evolutionary computation (CEC). IEEE

  • Tu J et al (2021) The colony predation algorithm. J Bionic Eng 18:674–710

    Google Scholar 

  • Wang Y, Cai ZX, Zhou YR, Fan Z (2009) Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique. Struct Multidiscip Optim 37(4):395–413

    Google Scholar 

  • Wang S, Li Y, Yang H (2019) Self-adaptive mutation differential evolution algorithm based on particle swarm optimization. Appl Soft Comput 81:105496

    Google Scholar 

  • Wang M, et al (2022) Harris hawk optimization algorithm based on cauchy distribution inverse cumulative function and tangent flight operator. Appl Intell: 1–28

  • Wei D, Sunney YSL, Yang T, Athanasios VV (2017) Differential evolution with event-triggered impulsive control. IEEE Trans Cybern 47(1):244–257

    Google Scholar 

  • Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evolut Comput 1.1:67–82

    Google Scholar 

  • Xing J et al (2023) Boosting whale optimizer with quasi-oppositional learning and Gaussian barebone for feature selection and COVID-19 image segmentation. J Bionic Eng 20(2):797–818

    Google Scholar 

  • Xueqing Y, Tian M (2022) Differential evolution with two-level adaptive mechanism for numerical optimization. Knowl Based Syst:108209.

  • Yi W et al (2022) Adaptive differential evolution with ensembling operators for continuous optimization problems. Swarm Evol Comput 69:100994

    Google Scholar 

  • Yue CT, et al. (2020) Problem definitions and evaluation criteria for the CEC 2020 special session and competition on single objective bound constrained numerical optimization. Comput Intell Lab, Zhengzhou Univ, Zhengzhou, China, Tech. Rep 201911

  • Zhang J, Sanderson AC (2009) JADE: adaptive differential evolution with optional external archive. IEEE Trans Evolut Comput 13(5):945–958

    Google Scholar 

  • Zhang M, Luo W, Wang X (2008) Differential evolution with dynamic stochastic selection for constrained optimization. Inf Sci 178(15):3043–3074

    Google Scholar 

  • Zhang J, Liang C, Huang Y, Wu J, Yang S (2009) An effective multiagent evolutionary algorithm integrating a novel roulette inversion operator for engineering optimization. Appl Math Comput 211:392–416

    MathSciNet  Google Scholar 

  • Zhao X et al (2022) Multi-swarm improved moth–flame optimization algorithm with chaotic grouping and Gaussian mutation for solving engineering optimization problems. Expert Syst Appl 204:117562

    Google Scholar 

  • Zou, L, et al. (2022) Improving the search accuracy of differential evolution by using the number of consecutive unsuccessful updates. Knowl Based Syst: 109005

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The author confirms sole responsibility for the following: study conception and design, data collection, analysis and interpretation of results, and manuscript preparation.

Corresponding author

Correspondence to Abdesslem Layeb.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable, because this article does not contain any studies with human or animal subjects.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

1.1 Pressure vessel design

figure a

Mathematical model

$${\text{Min}} \,\, f\left(\overrightarrow{x}\right)=0.6224{x}_{1}{x}_{3}{x}_{4}+1.7781{x}_{2}{x}_{3}^{2}+3.1661{x}_{1}^{2}{x}_{4}+19.84{x}_{1}^{2}{x}_{3}$$

subject to

$${g}_{1}\left(\overrightarrow{x}\right)={-x}_{1}+0.0193{x}_{3}\le 0,$$
$${g}_{2}\left(\overrightarrow{x}\right)=-{x}_{3}+0.00954{x}_{3}\le 0,$$
$${g}_{3}\left(\overrightarrow{x}\right)=-\pi {x}_{3}^{2}{x}_{4}-\frac{4}{3}\pi {x}_{3}^{3}+1296000\le 0,$$
$${g}_{4}\left(\overrightarrow{x}\right)={x}_{4}-240\le 0,$$

where

$$1*0.0625\le {x}_{i}\le 99*0.0625 i=\mathrm{1,2};$$
$$10\le {x}_{i}\le 200 i=\mathrm{3,4}.$$

1.2 Welded beam design

figure b

Mathematical model

$${\text{Min}} f(\overrightarrow{x})=1.10471{x}_{1}^{2}{x}_{2}+0.04811{x}_{3}{x}_{4}({x}_{2}+14)$$

subject to

$${g}_{1}\left(\overrightarrow{x}\right)=\tau \left(\overrightarrow{x}\right)-{\tau }_{{\text{max}}}\le 0,$$
$${g}_{2}\left(\overrightarrow{x}\right)=\sigma \left(\overrightarrow{x}\right)-{\sigma }_{{\text{max}}}\le 0,$$
$${g}_{3}\left(\overrightarrow{x}\right)={x}_{1}-{x}_{4}\le 0,$$
$${g}_{4}\left(\overrightarrow{x}\right)=1.10471{x}_{1}^{2}+0.04811{x}_{3}{x}_{4}\left(14.0+{x}_{2}\right)-5.0\le 0,$$
$${g}_{5}\left(\overrightarrow{x}\right)=0.125-{x}_{1}\le 0,$$
$${g}_{6}\left(\overrightarrow{x}\right)=\delta \left(\overrightarrow{x}\right)-{\delta }_{{\text{max}}}\le 0,$$
$${g}_{7}\left(\overrightarrow{x}\right)=P-{P}_{c}\left(\overrightarrow{x}\right)\le 0,$$

where \(0.1\le {x}_{1}\le \mathrm{2,0.1}\le {x}_{2}\le \mathrm{10,0.1}\le {x}_{3}\le \mathrm{10,0.1}\le {x}_{4}\le 2,\)

$$\tau (\overrightarrow{x})=\sqrt{{\left({\tau }^{\prime}\right)}^{2}+2{\tau }^{\prime}{\tau }^{{\prime}{\prime}}\frac{{x}_{2}}{2R}+{\left({\tau }^{{\prime}{\prime}}\right)}^{2}},$$
$${\tau }^{\prime}=\frac{P}{\sqrt{2}{x}_{1}{x}_{2}},{\tau }^{{\prime}{\prime}}=\frac{MR}{J}, M=P\left(L+\frac{{x}_{2}}{2}\right), R=\sqrt{\frac{{x}_{2}^{2}}{4}+{\left(\frac{{x}_{1}+{x}_{3}}{2}\right)}^{2}},$$
$$J=2\left\{\sqrt{2}{x}_{1}{x}_{2}\left[\frac{{x}_{2}^{2}}{4}+{\left(\frac{{x}_{1}+{x}_{3}}{2}\right)}^{2}\right]\right\}, \sigma \left(\overrightarrow{x}\right)=\frac{6PL}{{x}_{4}{x}_{3}^{2}}, \delta \left(\overrightarrow{x}\right)=\frac{6P{L}^{3}}{E{x}_{3}^{2}{x}_{4}},$$
$${P}_{{\text{c}}}(\overrightarrow{x})=\frac{4.013E\sqrt{\frac{{x}_{3}^{2}{x}_{4}^{6}}{36}}}{{L}^{2}}\left(1-\frac{{x}_{3}}{2L}\sqrt{\frac{E}{4G}} \right),$$
$$P=6000lb,L=14\text{ in}., E=30\times 1{0}^{6}\text{ psi}, G=12\times 1{0}^{6}{\text{psi}},$$
$${\tau }_{{\text{max}}}=13600\text{ psi},{ \sigma }_{{\text{max}}}=30000\text{ psi}, {\delta }_{{\text{max}}}=0.25\text{ in}.$$

Tension/compression spring design

figure c

Mathematical model

$${\text{Min}}\,\,\, f\left(\overrightarrow{x}\right)=({x}_{3}+2){x}_{2}{x}_{1}^{2}$$

Subject to

$${g}_{1}\left(\overrightarrow{x}\right)=1-\frac{{x}_{2}^{3}{x}_{3}}{71785{x}_{1}^{4}}\le 0,$$
$${g}_{2}\left(\overrightarrow{x}\right)=\frac{{4x}_{2}^{2}-{x}_{1}{x}_{2}}{12566({x}_{2}{x}_{1}^{3}-{x}_{1}^{4})}+\frac{1}{5108{x}_{1}^{2}}\le 0,$$
$${g}_{3}\left(\overrightarrow{x}\right)=1-\frac{140.41{x}_{1}}{{x}^{2}{x}_{3}}\le 0,$$
$${g}_{4}\left(\overrightarrow{x}\right)=\frac{{x}_{1}+{x}_{2}}{1.5}-1\le 0,$$

where \(0.05\le {x}_{1}\le 2.00, 0.25\le {x}_{2}\le 1.30\), \(2.0\le {x}_{3}\le 15.0.\)

Speed reducer design problem

figure d

Mathematical model

$${\text{Min}}\,\,\, f\left(\overrightarrow{x}\right)=0.7854{x}_{1}{x}_{2}^{2}\left(3.3333{x}_{3}^{2}+14.9334{x}_{3}-43.0934\right)-1.508{x}_{1}\left({x}_{6}^{2}+{x}_{7}^{2}\right)+7.4777\left({x}_{6}^{3}+{x}_{7}^{3}\right)+0.7854\left({x}_{4}{x}_{6}^{2}+{x}_{5}{x}_{7}^{2}\right)$$

subject to

$${g}_{1}\left(\overrightarrow{x}\right)=\frac{27}{{x}_{1}{x}_{2}^{2}{x}_{3}}-1\le 0$$
$${g}_{2}\left(\overrightarrow{x}\right)=\frac{397.5}{{x}_{1}{x}_{2}^{2}{x}_{3}^{2}}-1\le 0$$
$${g}_{3}\left(\overrightarrow{x}\right)=\frac{1.93{x}_{4}^{3}}{{x}_{2}{x}_{6}^{4}{x}_{3}}-1\le 0$$
$${g}_{4}\left(\overrightarrow{x}\right)=\frac{1.93{x}_{5}^{3}}{{x}_{2}{x}_{7}^{4}{x}_{3}}-1\le 0$$
$${g}_{5}\left(\overrightarrow{x}\right)=\frac{{\left[{\left(745\left({x}_{4}/{x}_{2}{x}_{3}\right)\right)}^{2}+16.9*{10}^{6}\right]}^{1/2}}{{110x}_{6}^{3}}-1\le 0$$
$${g}_{6}\left(\overrightarrow{x}\right)=\frac{{\left[{\left(745\left({x}_{5}/{x}_{2}{x}_{3}\right)\right)}^{2}+157.5*{10}^{6}\right]}^{1/2}}{{85x}_{7}^{3}}-1\le 0$$
$${g}_{7}\left(\overrightarrow{x}\right)=\frac{{x}_{2}{x}_{3}}{40}-1\le 0$$
$${g}_{8}\left(\overrightarrow{x}\right)=\frac{{5x}_{2}}{{x}_{1}}-1\le 0$$
$${g}_{9}\left(\overrightarrow{x}\right)=\frac{{x}_{1}}{12{x}_{2}}-1\le 0$$
$${g}_{10}\left(\overrightarrow{x}\right)=\frac{1.5{x}_{6}+1.9}{{x}_{4}}-1\le 0$$
$${g}_{11}\left(\overrightarrow{x}\right)=\frac{1.1{x}_{7}+1.9}{{x}_{5}}-1\le 0,$$

where \(2.6\le {x}_{1}\le 3.6\) \(0.7\le {x}_{2}\le 0.8\), \(17\le {x}_{3}\le 28\), \(7.3\le {x}_{4}\le 8.3\), \(7.3\le {x}_{5}\le 8.3\), \(2.9\le {x}_{6}\le 3.9\). \(5.0\le {x}_{7}\le 5.5\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Layeb, A. Differential evolution algorithms with novel mutations, adaptive parameters, and Weibull flight operator. Soft Comput 28, 7039–7091 (2024). https://doi.org/10.1007/s00500-023-09561-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-023-09561-3

Keywords

Navigation