Skip to main content
Log in

DE-based resource allocation for D2D-assisted NOMA systems

  • Optimization
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

The explosion of wireless network services has led to a need for new technologies and resource allocation schemes. Device-to-device (D2D) can reduce the access pressure of base station (BS) equipment, and non-orthogonal multiple access (NOMA) can multiplex network spectrum resources. The integration of them can further improve the performance of multi-cell networks. However, users still face more interference in multi-cell networks. This paper analyzes the relationship between transmission power and serial interference cancellation decoding order. Aiming at maximizing the sum rate of D2Ds, we propose three feasible frameworks based on the differential evolution (DE) algorithm. First, we invoke a coevolution DE-based resource allocation (CDRA) framework, which encodes the RB assignment and power allocation into the same individual for evolution. Second, we propose an iteration-combining DE-based resource allocation (IDRA) framework, which adopts a two-step DE algorithm to solve optimal power allocation and RB assignment scheme iteratively. Lastly, we invoke the power-repairing DE-based resource allocation (PDRA) framework, which can perform power repair on individuals with failed evolution. Simulation results demonstrate that: (1) the integration of D2D and NOMA techniques is capable of enhancing the achievable sum rate of D2Ds; (2) the three proposed frameworks for multi-cell NOMA networks can effectively optimize the objective function. Compared with CDRA and IDRA, PDRA performs better in terms of convergence speed and maximum D2D rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1:
Algorithm 2:
Algorithm 3:
Algorithm 4:
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

Download references

Funding

This work was supported in part by the National Natural Science Foundation of China under Grants No. 61972079, 62172084, 62132004, in part by the Major Research Plan of National Natural Science Foundation of China under Grant No. 92167103, in part by the LiaoNing Revitalization Talents Program under Grant No. XLYC2007162, in part by the LiaoNing Key Research and Development Program under Grant No. 2023JH2/101300196, in part by the Fundamental Research Funds for the Central Universities under Grants No. N2216009, N2216006, N2116004 and N2324004-12.

Author information

Authors and Affiliations

Authors

Contributions

JJ: conceptualization, methodology, writing—original draft. QT: software, validation, investigation, writing. AD: software, validation, investigation, writing. JC: writing, visualization, review and editing, XW: supervision, project administration, funding acquisition.

Corresponding author

Correspondence to Jie Jia.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, J., Tian, Q., Du, A. et al. DE-based resource allocation for D2D-assisted NOMA systems. Soft Comput 28, 3071–3082 (2024). https://doi.org/10.1007/s00500-023-09266-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-023-09266-7

Keywords

Navigation