Skip to main content
Log in

Hybrid particle swarm-differential evolution algorithm and its engineering applications

  • Optimization
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Differential evolution (DE) has been applied to solve various optimization problems due to its simplicity and high search efficiency. However, researchers have confirmed that it still has some shortcomings such as premature convergence and slow convergence, especially when dealing with complex optimization problems. To address these concerning issues, this paper proposes a hybrid particle swarm-differential evolution algorithm (HPSDE). Firstly, to enhance the optimization performance, a modified updating scheme named particle-swarm mutation strategy is designed and an improved control parameters adaption is developed. Then, DE/rand-to-rand/1 mutation strategy is adopted to increase the population diversity and enhance the ability of particles escaping away from local optima. To achieve an improved DE variant with rapid convergence and fine stability, a random mutation framework is designed to combine the two mutation strategies mentioned above. To evaluate the efficiency of HPSDE algorithm, four different experiments have been taken on twenty-nine benchmark functions. The numerical results validate that HPSDE has better overall performance than the other competitors. Additionally, HPSDE is successfully applied to solve five typical engineering optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  • Balochian S, Baloochian H (2019) Social mimic optimization algorithm and engineering applications. Expert Syst Appl 134:178–191

    Google Scholar 

  • Brest J, Greiner S, Boskovic B, Mernik M, Zumer V (2006) Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans Evol Comput 10(6):646–657

    Google Scholar 

  • Cai ZH, Gong WY, Ling CX, Zhang H (2011) A clustering-based differential evolution for global optimization. Appl Soft Comput 11(1):1363–1379

    Google Scholar 

  • Chen K, Zhou F, Yin L, Wang S, Wang Y, Wan F (2018a) A hybrid particle swarm optimizer with sine cosine acceleration coefficients. Inf Sci 422:218–241

    MathSciNet  Google Scholar 

  • Chen K, Zhou F, Wang Y, Yin L (2018b) An ameliorated particle swarm optimizer for solving numerical optimization problems. Appl Soft Comput 73:482–496

    Google Scholar 

  • Cui LZ, Li GH, Lin QZ, Chen JY, Lan N (2016) Adaptive differential evolution algorithm with novel mutation strategies in multiple sub-populations. Comput Oper Res 67:155–173

    MathSciNet  MATH  Google Scholar 

  • Das S, Konar A (2009) Automatic image pixel clustering with an improved differential evolution. Appl Soft Comput 9(11):226–236

    Google Scholar 

  • Elaziz MA, Oliva D, Xiong S (2017) An improved opposition-based sine cosine algorithm for global optimization. Expert Syst Appl 90:484–500

    Google Scholar 

  • Epitropakis MG, Pavlidis DK, Plagianakos NG, Plagianakos VP, Vrahatis MN (2011) Enhancing differential evolution utilizing proximity-based mutation operators. IEEE Trans Evol Comput 15(1):99–119

    Google Scholar 

  • Faramarzi A, Heidarinejad M, Stephens B, Mirjalili S (2020) Equilibrium optimizer: a novel optimization algorithm. Knowl Based Syst 191:105190

    Google Scholar 

  • Fu GZ, Huang HZ, Li YF et al (2021) An adaptive hybrid evolutionary algorithm and its application in aeroengine maintenance scheduling problem [J]. Soft Comput 25(8):1–12

    Google Scholar 

  • Gamperle R, Muller SD, Koumoutsakos P (2005) A parameter study for differential evolution. In: Proceedings of WSEAS international conference on advances in intelligent systems, fuzzy systems, evolutionary computation, WSEAS, New York, pp 293–298

  • Guedria NB (2016) Improved accelerated PSO algorithm for mechanical engineering optimization problems. Appl Soft Comput 40:455–467

    Google Scholar 

  • Guo WY, Wang Y, Zhao FQ, Dai F (2019) Riesz fractional derivative Elite-guided sine cosine algorithm. Appl Soft Comput 81:105481

    Google Scholar 

  • Gupta S, Deep K (2018) Improved sine cosine algorithm with crossover scheme for global optimization. Knowl Based Syst 165:374–406

    Google Scholar 

  • Huang FZ, Wang L, He Q (2007) An effective co-evolutionary differential evolution for constrained optimization. Appl Math Comput 186(1):340–356

    MathSciNet  MATH  Google Scholar 

  • Kashan AH (2014) League championship algorithm (LCA): an algorithm for global optimization inspired by sport championships. Appl Soft Comput 16:171–200

    Google Scholar 

  • Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of IEEE conference on neural networks, IEEE, pp 1942–1948

  • Lee KS, Geem ZW (2005) A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice. Comput Methods Appl Mech Eng 194:3902–3933

    MATH  Google Scholar 

  • Li YZ, Wang SH (2019) Differential evolution algorithm with elite archive and mutation strategies collaboration. Artif Intell Rev 3:1–46

    Google Scholar 

  • Li YZ, Wang SH, Yang B (2020) An improved differential evolution algorithm with dual mutation strategies collaboration. Expert Syst Appl 153:113451

    Google Scholar 

  • Liu J, Lampinen J (2005) A fuzzy adaptive differential evolution algorithm. Soft Comput 9(6):448–462

    MATH  Google Scholar 

  • Liu H, Cai ZX, Wang Y (2010) Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization. Appl Soft Comput 10:629–640

    Google Scholar 

  • Mallipeddi R, Suganthan PN, Pan QK, Tasgetiren MF (2011) Differential evolution algorithm with ensemble of parameters and mutation strategies. Appl Soft Comput 11(2):1679–1696

    Google Scholar 

  • Mao B, Xie Z, Wang Y, Handroos H, Wu H, Shi S (2017) A hybrid differential evolution and particle swarm optimization algorithm for numerical kinematics solution of remote maintenance manipulators. Fusion Eng Des 124:587–590

    Google Scholar 

  • Marcic T, Stumberger B, Stumberger G (2014) Differential-evolution-based parameter identification of a line-start IPM synchronous motor. IEEE Trans Ind Electron 61(11):5921–5929

    Google Scholar 

  • Meng ZY, Pan JS, Kong LP (2018) Parameters with adaptive learning mechanism (PALM) for the enhancement of differential evolution. Knowl Based Syst 141:92–112

    Google Scholar 

  • Mirjalili S (2015a) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl Based Syst 89:228–249

    Google Scholar 

  • Mirjalili S (2015b) The ant lion optimizer. Adv Eng Softw 83:80–98

    Google Scholar 

  • Mirjalili S (2016) SCA: a sine cosine algorithm for solving optimization problems. Knowl Based Syst 96:120–133

    Google Scholar 

  • Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Google Scholar 

  • Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Google Scholar 

  • Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl 27:495–513

    Google Scholar 

  • Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191

    Google Scholar 

  • Mohamed AW (2015) An improved differential evolution algorithm with triangular mutation for global numerical optimization. Comput Ind Eng 85:359–375

    Google Scholar 

  • Nasimul N, Danushka B, Hitoshi I (2011) An adaptive differential evolution algorithm. In: Proceedings of IEEE congress on evolutionary computation, IEEE, New Orleans, LA, pp 2229–2236

  • Ponsich A, Coello CAC (2013) A hybrid differential evolution-Tabu search algorithm for the solution of job-shop scheduling problems. Appl Soft Comput 13(1):462–474

    Google Scholar 

  • Qin AK, Huang VL, Suganthan PN (2009) Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans Evol Comput 13(2):398–417

    Google Scholar 

  • Ratnaweera A, Halgamuge SK, Watson HC (2004) Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans Evol Comput 8(3):240–255

    Google Scholar 

  • Ren W, Wang Y, Han M (2021) Time series prediction based on echo state network tuned by divided adaptive multi-objective differential evolution algorithm[J]. Soft Comput 25(2):4489–4502

    Google Scholar 

  • Ronkkonen J, Kukkonen S, Price KV (2005) Real-parameter optimization with differential evolution. In: Proceedings of IEEE conference on evolutionary computation, IEEE, pp 506–513

  • Sadollah A, Bahreininejad A, Eskandar H, Hamdi M (2013) Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems. Appl Soft Comput 13(5):2592–2612

    Google Scholar 

  • Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation algorithm: theory and application. Adv Eng Softw 105:30–47

    Google Scholar 

  • Sayah S, Hamouda A (2013) A hybrid differential evolution algorithm based on particle swarm optimization for nonconvex economic dispatch problems. Appl Soft Comput 13(4):1608–1619

    Google Scholar 

  • Sethanan K, Pitakaso R (2016) Improved differential evolution algorithms for solving generalized assignment problem. Expert Syst Appl 45:450–459

    Google Scholar 

  • Shi Y, Eberhart RC (1998) A modified particle swarm optimizer. In: Proceedings of IEEE international conference on evolutionary computation, IEEE, Anchorage, AK, pp 69–73

  • Singh PR, Elaziz MA, Xiong SW (2019) Ludo game-based metaheuristics for global and engineering optimization. Appl Soft Comput 84:105723

    Google Scholar 

  • Storn R (1996) On the usage of differential evolution for function optimization. In: Biennial conference of the North American Fuzzy information processing society (NAFIPS), IEEE, Berkeley, pp 519–523

  • Storn R, Price KV (1995) Differential evolution: a simple and efficient adaptive scheme for global optimization over continuous spaces. In: International Computer Science Institute Technology Report, TR-95-012

  • Storn R, Price K (1996) Minimizing the real functions of the ICEC’96 contest by differential evolution. In: Proceedings of IEEE conference on evolutionary computation, IEEE, pp 842–844

  • Suganthan PN (1999) Particle swarm optimizer with neighborhood operator. In: Proceedings of IEEE international conference on evolutionary computation, IEEE, Washington, DC, pp 1958–1962

  • Sun J, Zhang Q, Tsang EPK (2005) DE/EDA: a new evolutionary algorithm for global optimization. Inform Sci 169(3–4):249–262

    MathSciNet  Google Scholar 

  • Teo J (2006) Exploring dynamic self-adaptive populations in differential evolution. Soft Comput 10(8):673–686

    Google Scholar 

  • Tian G, Ren Y, Zhou M (2016) Dual-objective scheduling of rescue vehicles to distinguish forest fires via differential evolution and particle swarm optimization combined algorithm. IEEE Trans Intell Transp Syst 17(11):3009–3021

    Google Scholar 

  • Tian D, Zhao X, Shi Z (2019) Chaotic particle swarm optimization with sigmoid-based acceleration coefficients for numerical function optimization. Swarm Evol Comput 51:100573

    Google Scholar 

  • Wang H, Liu H, Li C, Zeng SY (2007) Opposition-based particle swarm algorithm with Cauchy mutation. In: 2007 IEEE congress on evolutionary computation, Singapore, pp 4750–4756

  • Wang Y, Cai Z, Zhang Q (2011) Differential evolution with composite trial vector generation strategies and control parameters. IEEE Trans Evol Comput 15(1):55–66

    Google Scholar 

  • Wang SH, Li YZ, Yang HY, Liu H (2018) Self-adaptive differential evolution algorithm with improved mutation strategy. Soft Comput 22(10):3433–3447

    Google Scholar 

  • Wang SH, Li YZ, Yang HY (2019) Self-adaptive mutation differential evolution algorithm based on particle swarm optimization. Appl Soft Comput 81:105496

    Google Scholar 

  • Zhang J, Sanderson AC (2009) JADE: adaptive differential evolution with optional external archive. IEEE Trans Evol Comput 13(5):945–958

    Google Scholar 

  • Zhang CS, Ning JX, Lu S, Ouyang DT, Ding TN (2009) A novel hybrid differential evolution and particle swarm optimization algorithm for unconstrained optimization. Oper Res Lett 37(2):117–122

    MathSciNet  MATH  Google Scholar 

  • Zhao ZW, Yang JM, Hu ZY, Che HJ (2016) A differential evolution algorithm with self-adaptive strategy and control parameters based on symmetric Latin hypercube design for unconstrained optimization problems. Eur J Oper Res 250(1):30–45

    MathSciNet  MATH  Google Scholar 

  • Zielinski K, Laur R (2006) Constrained single-objective optimization using differential evolution. In: IEEE international conference on evolutionary computation, pp 223–230

Download references

Acknowledgements

This work was supported by Projects of Guangdong Province Department of Education (nos. 2019KZDZX1034, 2021KCXTD027 and no. 2018KTSCX237) and Natural Science Foundation of Guangdong, China (2019A1515110180). The authors are grateful to all the editors and the referees for their hard works.

Funding

This work was funded by Projects of Guangdong Province Department of Education (nos. 2019KZDZX1034, 2021KCXTD027 and no. 2018KTSCX237) and Natural Science Foundation of Guangdong, China (2019A1515110180).

Author information

Authors and Affiliations

Authors

Contributions

ML: Conceptualization, Methodology, Software, Investigation, Writing—original draft, Writing—review & editing. ZW: Conceptualization, Methodology, Software, Investigation, Writing—original draft, Writing—review and editing. WZ: Resources, Visualization, Formal analysis.

Corresponding author

Correspondence to Meijin Lin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 A.1 Unimodal benchmark functions

Function

Dim

Search range

Global optimum

\({f}_{1}\left(x\right)={\sum }_{i=1}^{D}{x}_{i}^{2}\)

30

[− 100,100]

0

\({f}_{2}\left(x\right)={\sum }_{i=1}^{D}\left|{x}_{i}\right|+{\prod }_{i=1}^{D}\left|{x}_{i}\right|\)

30

[− 10,10]

0

\({f}_{3}\left(x\right)={\sum }_{i=1}^{D}{({\sum }_{j=1}^{i}{x}_{j})}^{2}\)

30

[− 100,100]

0

\({f}_{4}\left(x\right)={max}_{i}\{\left|{x}_{i}\right|,1\le i\le D\}\)

30

[− 100,100]

0

\({f}_{5}\left(x\right)={\sum }_{i=1}^{D-1}[100{\left({x}_{i+1}-{x}_{i}^{2}\right)}^{2}+{({x}_{i}-1)}^{2}]\)

30

[− 30,30]

0

\({f}_{6}\left(x\right)={\sum }_{i=1}^{D}{([{x}_{i}+0.5])}^{2}\)

30

[− 100,100]

0

\({f}_{7}\left(x\right)={\sum }_{i=1}^{D}i{x}^{4}+random[\mathrm{0,1})\)

30

[− 1.28,1.28]

0

\({f}_{8}\left(x\right)={x}_{1}^{2}+{10}^{6}\sum_{i=2}^{D}{x}_{i}^{2}\)

30

[− 100,100]

0

\({f}_{9}\left(x\right)={10}^{6}*{x}_{1}^{2}+\sum_{i=2}^{D}{x}_{i}^{2}\)

30

[− 100,100]

0

\({f}_{10}\left(x\right)=\sum_{i=1}^{D}{\left({10}^{6}\right)}^{\frac{i-1}{D-1}}*{x}_{i}^{2}\)

30

[− 100,100]

0

1.2 A. 2 Multimodal benchmark functions

Function

Dim

Search range

Global optimum

\({f}_{11}\left(x\right)=\sum_{i=1}^{D}\left(\sum_{k=0}^{kmax}\left[{a}^{k}\mathrm{cos}\left(2\pi {b}^{k}\left({x}_{i}+0.5\right)\right)\right]\right)-D\sum_{k=0}^{kmax}\left[{a}^{k}\mathrm{cos}\left(\pi {b}^{k}\right)\right]\)

\(a=0.5,b=3,kmax=20\)

30

[− 0.5,0.5]

0

\({f}_{12}\left(x\right)=1-\mathrm{cos}\left(2\pi \sqrt{\sum_{i=1}^{D}{x}_{i}^{2}}\right)+0.1*\left(2\pi \sqrt{\sum_{i=1}^{D}{x}_{i}^{2}}\right)\)

30

[− 100,100]

0

\({f}_{13}\left(x\right)=10*D+{\sum }_{i=1}^{D}[{x}_{i}^{2}-10\mathrm{cos}\left(2\pi {x}_{i}\right)]\)

30

[− 0.5,0.5]

0

\({f}_{14}\left(x\right)={\sum }_{i=1}^{D}-{x}_{i}\mathrm{sin}(\sqrt{\left|{x}_{i}\right|})\)

30

[− 500,500]

− 418.9829*D

\({f}_{15}\left(x\right)={\sum }_{i=1}^{D}[{x}_{i}^{2}-10\mathrm{cos}\left(2\pi {x}_{i}\right)+10]\)

30

[− 5.12,5.12]

0

\({f}_{16}\left(x\right)=-20\mathrm{exp}\left(-0.2\sqrt{\frac{1}{D}{\sum }_{i=1}^{D}{x}_{i}^{2}}\right)-\mathrm{exp}\left(\frac{1}{D}{\sum }_{i=1}^{D}\mathrm{cos}\left(2\pi {x}_{i}\right)\right)+20+e\)

30

[− 32,32]

0

\({f}_{17}\left(x\right)=\frac{1}{4000}{\sum }_{i=1}^{D}{x}_{i}^{2}-{\prod }_{i=1}^{D}\mathrm{cos}\left(\frac{{x}_{i}}{\sqrt{i}}\right)+1\)

30

[− 600,600]

0

\({f}_{18}\left(x\right)=\frac{\pi }{D}\left\{10\mathrm{sin}\left(\pi {y}_{i}\right)+{\sum }_{i=1}^{D-1}{\left({y}_{i}-1\right)}^{2}\left[1+10{sin}^{2}\left(\pi {y}_{i+1}\right)\right]+{\left({y}_{D}-1\right)}^{2}\right\} +{\sum }_{i=1}^{D}u\left({x}_{i},\mathrm{10,100,4}\right)\)

\({y}_{i}=1+\frac{{x}_{i}+1}{4}\), \(\mathrm{u}\left({x}_{i},a,k,m\right)=\left\{\begin{array}{c}k{({x}_{i}-a)}^{m}{x}_{i}>a\\ -a<{x}_{i}<a\\ k{(-{x}_{i}-a)}^{m}{x}_{i}<-a\end{array}\right.\)

30

[− 50,50]

0

\(\begin{array}{c}{f}_{19}\left(x\right)=0.1\{{sin}^{2}\left(3\pi {x}_{1}\right)+{\sum }_{i=1}^{D}{\left({x}_{i}-1\right)}^{2}\left[1+{sin}^{2}\left(3\pi {x}_{1}+1\right)\right]\\ +{({x}_{D}-1)}^{2}[1+{sin}^{2}(2\pi {x}_{D})]\}+{\sum }_{i=1}^{D}u({x}_{i},\mathrm{5,100,4})\end{array}\)

30

[− 50,50]

0

1.3 A.3 Fixed-dimension multimodal benchmark functions

Function

Dim

Search range

Global optimum

\({f}_{20}\left(x\right)={(\frac{1}{500}+{\sum }_{j=1}^{25}{(j+{\sum }_{i=1}^{2}{({x}_{i}-{a}_{ij})}^{6})}^{-1})}^{-1}\)

2

[− 65,65]

0.9980

\({f}_{21}\left(x\right)={\sum }_{i=1}^{11}{[{a}_{i}-\frac{{x}_{1}({b}_{i}^{2}+{b}_{i}{x}_{2})}{{b}_{i}^{2}+{b}_{i}{x}_{3}+{x}_{4}}]}^{2}\)

4

[− 5,5]

0.0003

\({f}_{22}\left(x\right)=4{x}_{1}^{2}-2.1{x}_{1}^{4}+\frac{1}{3}{x}_{1}^{6}+{x}_{1}{x}_{2}-4{x}_{2}^{2}+4{x}_{2}^{4}\)

2

[− 5,5]

− 1.0316

\({f}_{23}\left(x\right)={({x}_{2}-\frac{5.1}{4{\pi }^{2}}{x}_{1}^{2}+\frac{5}{\pi }{x}_{1}-6)}^{2}+10\left(1-\frac{1}{8\pi }\right)cos{x}_{1}+10\)

2

[− 5,5]

0.3980

\(\begin{array}{l}{f}_{24}\left(x\right)=\left[1+{\left({x}_{1}+{x}_{2}+1\right)}^{2}\left(19-14{x}_{1}+3{x}_{1}^{2}-14{x}_{2}+6{x}_{1}{x}_{2}+3{x}_{2}^{2}\right)\right]\\ \times [30+{\left(2{x}_{1}-3{x}_{2}\right)}^{2}\times (18-32{x}_{1}+12{x}_{1}^{2}+48{x}_{2}-36{x}_{1}{x}_{2}+27{x}_{2}^{2})]\end{array}\)

2

[− 2,2]

3.0000

\({f}_{25}\left(x\right)=-{\sum }_{i=1}^{4}{c}_{i}\mathrm{exp}(-{\sum }_{j=1}^{3}{a}_{ij}{({x}_{j}-{p}_{ij})}^{2})\)

3

[1,3]

− 3.8600

\({f}_{26}\left(x\right)=-{\sum }_{i=1}^{4}{c}_{i}\mathrm{exp}(-{\sum }_{j=1}^{6}{a}_{ij}{({x}_{j}-{p}_{ij})}^{2})\)

6

[0,1]

− 3.3200

\({f}_{27}\left(x\right)=-{\sum }_{i=1}^{5}{[\left(X-{a}_{i}\right){\left(X-{a}_{i}\right)}^{T}+{c}_{i}]}^{-1}\)

4

[0,10]

− 10.1532

\({f}_{28}\left(x\right)=-{\sum }_{i=1}^{7}{[\left(X-{a}_{i}\right){\left(X-{a}_{i}\right)}^{T}+{c}_{i}]}^{-1}\)

4

[0,10]

− 10.4028

\({f}_{29}\left(x\right)=-{\sum }_{i=1}^{10}{[\left(X-{a}_{i}\right){\left(X-{a}_{i}\right)}^{T}+{c}_{i}]}^{-1}\)

4

[0,10]

− 10.5363

1.4 B.1 Tension spring design problem (TSD)

Min \(f\left(x\right)=\left({x}_{3}+2\right){x}_{2}{x}_{1}^{2}\)

Subject to:

$${g}_{1}\left(x\right)=1-\frac{{x}_{2}^{3}{x}_{3}}{71785{x}_{1}^{4}}\le 0$$
$${g}_{2}\left(x\right)=\frac{4{x}_{2}^{2}-{x}_{1}{x}_{2}}{12566\left({x}_{2}{x}_{1}^{3}-{x}_{1}^{4}\right)}+\frac{1}{5108{x}_{1}^{2}}-1\le 0$$
$${g}_{3}\left(x\right)=1-\frac{140.45{x}_{1}}{{x}_{2}^{2}{x}_{3}}\le 0$$
$${g}_{4}\left(x\right)=\frac{{x}_{1}+{x}_{2}}{1.5}-1\le 0$$

\(0.25\le {x}_{1}\le 1.3\), \(0.05\le {x}_{2}\le 2.0\), \(2\le {x}_{3}\le 15\)

1.5 B.2 Pressure vessel design problem (PVD)

Min \(f\left(x\right)=0.6224{x}_{1}{x}_{3}{x}_{4}+1.7881{x}_{2}{x}_{3}^{2}+3.1661{x}_{1}^{2}{x}_{4}+19.84{x}_{1}^{2}{x}_{3}\)

Subject to:

$${g}_{1}\left(x\right)=-{x}_{1}+0.0193{x}_{3}\le 0$$
$${g}_{2}\left(x\right)=-{x}_{2}+0.00954{x}_{3}\le 0$$
$${g}_{3}\left(x\right)=-\pi {x}_{3}^{2}{x}_{4}-\frac{3}{4}\pi {x}_{3}^{3}+129600\le 0$$
$${g}_{4}\left(x\right)={x}_{4}-240\le 0$$

\({x}_{1}\in \left\{\mathrm{1,2},3,\dots ,99\right\}\times 0.0625\), \({x}_{2}\in \left\{\mathrm{1,2},3,\dots ,99\right\}\times 0.0625\), \({x}_{3}\in \left[\mathrm{10,200}\right]\),\({x}_{4}\in [\mathrm{10,200}]\)

1.6 B.3 Welded beam design problem (WBD)

Min \(f\left(x\right)=1.10471{x}_{1}^{2}{x}_{2}+0.04811{x}_{3}{x}_{4}(14.0+{x}_{2})\)

Subject to:

$${g}_{1}\left(x\right)=\tau \left(x\right)-{\tau }_{max}\le 0$$
$${g}_{2}\left(x\right)=\sigma \left(x\right)-{\sigma }_{max}\le 0$$
$${g}_{3}\left(x\right)=\delta \left(x\right)-{\delta }_{max}\le 0$$
$${g}_{4}\left(x\right)={x}_{1}-{x}_{4}\le 0$$
$${g}_{5}\left(x\right)=P-{P}_{c}(x)\le 0$$
$${g}_{6}\left(x\right)=0.125-{x}_{1}\le 0$$
$${g}_{7}\left(x\right)=1.10471{x}_{1}^{2}+0.04811{x}_{3}{x}_{4}\left(14.0+{x}_{2}\right)-5.0\le 0$$

\(0.1\le {x}_{1}\le 2\); \(0.1\le {x}_{2}\le 10\); \(0.1\le {x}_{3}\le 10\); \(0.1\le {x}_{4}\le 2\)

\(\uptau \left(x\right)=\sqrt{{({\uptau }^{\mathrm{^{\prime}}})}^{2}+2{\uptau }^{\mathrm{^{\prime}}}{\uptau }^{\mathrm{^{\prime}}\mathrm{^{\prime}}}\frac{{x}_{2}}{2R}+{({\uptau }^{\mathrm{^{\prime}}\mathrm{^{\prime}}})}^{2}}\), \({\uptau }^{\mathrm{^{\prime}}}=\frac{P}{\sqrt{2}{x}_{1}{x}_{2}}\), \({\uptau }^{\mathrm{^{\prime}}\mathrm{^{\prime}}}=\frac{MR}{J}\), \(M=P(L+\frac{{x}_{2}}{2})\), \(R=\sqrt{\frac{{x}_{2}^{2}}{4}+{(\frac{{x}_{1}+{x}_{3}}{2})}^{2}}\), \(J=2\{\sqrt{2}{x}_{1}{x}_{2}[\frac{{x}_{2}^{2}}{4}+{(\frac{{\mathrm{x}}_{1}+{\mathrm{x}}_{3}}{2})}^{2}]\}\), \(\upsigma \left(x\right)=\frac{6PL}{{x}_{4}{x}_{3}^{2}}\), \(\updelta \left(x\right)=\frac{6P{L}^{3}}{E{x}_{3}^{2}{x}_{4}}\), \({P}_{c}\left(x\right)=\frac{4.013\mathrm{E}\sqrt{\frac{{x}_{3}^{2}{x}_{4}^{6}}{36}}}{{\mathrm{L}}^{2}}(1-\frac{{x}_{3}}{2L}\sqrt{\frac{E}{4G}} )\), \(P=6000lb\), \(L=14in\), \({\delta }_{max}=0.25in\), \(E=30\times {10}^{6}psi\), \(G=12\times {10}^{6}psi\), \({\uptau }_{\mathrm{max}}=13600psi\), \({\sigma }_{max}=30000psi\)

1.7 B.4 Three-bar truss design problem (TTD)

Min \(f\left(x\right)=(2\sqrt{2}{x}_{1}+{x}_{2})\times l\)

Subject to:

$${g}_{1}\left(x\right)=\frac{\sqrt{2}{x}_{1}+{x}_{2}}{\sqrt{2}{x}_{1}^{2}+2{x}_{1}{x}_{2}}P-\sigma \le 0$$
$${g}_{2}\left(x\right)=\frac{{x}_{2}}{\sqrt{2}{x}_{1}^{2}+2{x}_{1}{x}_{2}}P-\sigma \le 0$$
$${g}_{3}\left(x\right)=\frac{1}{{x}_{1}+\sqrt{2}{x}_{2}}P-\sigma \le 0$$

\(l\)=100 cm, \(P=2KN/{cm}^{2}\), \(\upsigma =2KN/{cm}^{2}\), \(0\le {x}_{1}\le 1\), \(0\le {x}_{2}\le 1\)

1.8 B.5 Cantilever beam design problem (CBD)

Min \(f\left(x\right)=0.0624*({x}_{1}+{x}_{2}+{x}_{3}+{x}_{4}+{x}_{5})\)

Subject to:

$$0.01\le x=[{x}_{1} {x}_{2} {x}_{3} {x}_{4 }{x}_{5}]\le 100$$

1.9 C.1 Full names and abbreviations

Full name

Abbreviation

Full name

Abbreviation

Hybrid particle swarm-differential evolution

HPSDE

Differential evolution

DE

DE variant with a self-adaptive strategy

SLADE

Particle swarm optimization

PSO

Symmetric Latin hypercube design

SLHD

adaptive DE

aDE

Parameters with adaptive learning mechanism

PLAM

Self-adaptive DE variant

SaDE

Differential evolution algorithm with ensemble of parameters

EPSDE

Improved DE variant

IDE

Estimation of distribution algorithm

EDA

Multiple sub-populations DE

MPADE

Time-varying acceleration coefficients

TVAC

Self-adaptive mutation DE

DEPSO

Sine cosine acceleration coefficients

SCAC

Hybrid DE and PSO

DEMPSO

Nonlinear dynamic acceleration coefficients

NDAC

Sine cosine algorithm

SCA

Sigmoid-based acceleration coefficients

SBAC

Opposition-based SCA

OBSCA

Cosine-based acceleration coefficients

CBAC

Grey wolf optimizer

GWO

DE with dual mutation strategies collaboration

DMCDE

Slap swarm algorithm

SSA

DE with elite archive and mutation strategies collaboration

EASCDE

Whale optimization algorithm

WOA

Self-adaptive DE with improved mutation strategy

IMSaDE

Multi-verse optimizer

MVO

DE with ensemble of parameters and mutation strategies

EPSDE

Tension spring design

TSD

DE with composite trial vector generation strategies and control parameters

CoDE

Pressure vessel design

PVD

DE with self-adapting control parameters

jDE

Welded beam design

WBD

Riesz fractional derivative Elite-guided SCA

RFSCA

Three-bar truss design

TTD

Opposition-based PSO with Cauchy mutation

OPSO

Cantilever beam design

CBD

Moth-flame optimization algorithm

MFO

Equilibrium optimizer

EO

Co-evolutionary differential evolution

CEDE

Harmony search algorithm

HS

Social mimic optimization algorithm

SMO

Improved sine cosine algorithm

ISCA

Improved accelerated PSO algorithm

IAPSO

Mine blast algorithm

MBA

Ludo game-based swarm intelligence algorithm

LGSI

Ant lion optimizer

ALO

Grasshopper optimization algorithm

GOA

League championship algorithm

LCA

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, M., Wang, Z. & Zheng, W. Hybrid particle swarm-differential evolution algorithm and its engineering applications. Soft Comput 27, 16983–17010 (2023). https://doi.org/10.1007/s00500-023-09025-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-023-09025-8

Keywords

Navigation