Skip to main content
Log in

Metaheuristic algorithms for elevator group control system: a holistic review

  • Optimization
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Optimization plays a crucial role in the elevator group control system (EGCS) since various unpredictable factors, such as future traffic demand of each floor, passengers’ random destinations, and indiscriminate starting-stopping of elevators, are incorporated in scheduling a group of elevators. When solving the optimization problem of EGCS, a number of dynamic performance indices, including average waiting time, average journey time, energy consumption, etc., have to be taken into account. Until now, numerous optimization approaches have been utilized to solve the car-dispatching problem of vertical transportation. Among those methods, in this study, the authors concentrate on various metaheuristic techniques that were implemented to optimize the metrics of EGCS. While establishing a metaheuristic approach, all the previous authors recognized various factors and limitations, which ought to analyze to develop a new metaheuristic-based EGCS. Owing to this, EGCS implemented via metaheuristic techniques is summarized in this review study, together with the underlying contributions, fitness functions, computational time, and limitations. What is more, performance comparisons of different previously implemented metaheuristic approaches are depicted in this study. This research will not only assist to figure out optimal elevator group optimization algorithms, but also will shrink the technological gap by outlining a number of potential future research lines and methodologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

Abbreviations

ABC:

Artificial bee colony

ACO:

Ant colony optimization

AFSO:

Artificial fish swarm optimization

AIA:

Artificial immune algorithm

AJT:

Average journey time

ALWP:

Average long waiting percentage

ANS:

Average number of stops

ART:

Average riding time

AST:

Average service time

ATT:

Average travelling time

AWT:

Average waiting time

BA:

Bat algorithm

CA:

Cellular automata

CT:

Computational time

DDES:

Double deck elevator system

EA:

Evolutionary algorithms

EC:

Energy consumption

EGCS:

Elevator group control system

ES:

Evolutionary strategies

FCM:

Fuzzy cognitive map

FL:

Fuzzy logic

FNN:

Fuzzy neural network

GA:

Genetic algorithm

GNP:

Genetic network programming

GWO:

Gray wolf optimizer

IPSO:

Immune particle swarm optimization

LWP:

Long waiting-time percentage

NC:

Nearest car

NN:

Neural network

PSO:

Particle swarm optimization

PTS:

Probabilistic tabu search

RPC:

Riding power consumption

SSCA:

Static sectoring-based control algorithm

SSZA:

Static zoning control algorithm

TS:

Tabu search

TSP:

Travelling salesman problem

VSA:

Viral system algorithm

\(t_{{\text{f}}}\) :

Transit time of a single floor

\(t_{{\text{s}}}\) :

Stopping time of elevator

\(t_{{\text{p}}}\) :

Passenger transfer time

\(S\) :

Expected number of stops

\(H\) :

Highest reversal floor

CC:

Rated car capacity

\(\emptyset_{1}\) :

Ground floor level

\(\emptyset_{2}\) :

Highest down hall call level

\(\emptyset_{3}\) :

Number of down hall call between \(\emptyset_{1} {\text{and }}\emptyset_{2}\)

\(\emptyset_{4}\) :

Highest up hall call level

\(\emptyset_{5}\) :

Number of up hall call between\(\emptyset_{1} {\text{and }}\emptyset_{4}\)

\(\emptyset_{6}\) :

Lowest down hall call level

t :

Opening and closing time of door

Hct:

Highest trip time of car

Lct:

Lowest trip time of car

f :

Total fitness

\( E_{{\text{a}}} \) :

Acceleration or deceleration energy

\( E_{{\text{v}}} \) :

Uniform running speed energy consumption

m :

Average weight of passenger

\( m_{{{\text{car}}}} \) :

Weight of elevator car

\( m_{{{\text{cwt}}}} \) :

Weight of counter weight

\( n_{1} \) :

Number of passengers

h :

Floor displacement

P :

Number of starting-stopping

q(r):

Total call answered by rth elevator

N :

Total number of passengers

\( t_{n} \) :

Waiting-time of nth passenger

\( t_{{\max }} \) :

Maximum waiting-time among N passengers

\( n_{{\text{c}}} \) :

Passengers’ sum experiencing one-cage service

\( n_{l} \) :

GNP loop-number in one-hour evaluation

\( w_{t} ,~w_{c} ,~w_{l} \) :

Weighting coefficients set by trial and error

References

  • Abdolazimi O, Esfandarani MS, Shishebori D (2021) Design of a supply chain network for determining the optimal number of items at the inventory groups based on ABC analysis: a comparison of exact and meta-heuristic methods. Neural Comput Appl 33:6641–6656

    Article  Google Scholar 

  • Alander JT, Herajärvi J, Moghadampour G, Tyni T, Ylinen J (1998) Genetic algorithms in the elevator allocation problem. Artif Neural Nets Genet Algorithms. https://doi.org/10.1007/978-3-7091-6492-1_56

    Article  Google Scholar 

  • Alander JT, Ylinen J, Tyni T (1995) Elevator group control using distributed genetic algorithm. In: Artificial neural nets and genetic algorithms. Springer Vienna, pp 400–403

  • Al-Sharif L (2010) The effect of multiple entrances on the elevator round trip time under up-peak traffic. Math Comput Model 52:545–555. https://doi.org/10.1016/j.mcm.2010.03.053

    Article  MathSciNet  MATH  Google Scholar 

  • Al-Sharif L, Aldahiyat HM, Alkurdi LM (2012) The use of Monte Carlo simulation in evaluating the elevator round trip time under up-peak traffic conditions and conventional group control. Build Serv Eng Res Technol 33:319–338. https://doi.org/10.1177/0143624411414837

    Article  Google Scholar 

  • Arnold DV, Beyer HG (2003) A comparison of evolution strategies with other direct search methods in the presence of noise. Comput Optim Appl 24:135–159. https://doi.org/10.1023/A:1021810301763

    Article  MathSciNet  MATH  Google Scholar 

  • Askarzadeh A (2016) A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput Struct 169:1–12

    Article  Google Scholar 

  • Bansal JC (2019) Particle swarm optimization. In: Bansal JC, Singh PK, Pal N (eds) Evolutionary and swarm intelligence algorithms. Springer Verlag, Berlin, pp 11–23

    Google Scholar 

  • Barney GC (1987) Elevator abstracts, including escalators. Ellis Horwood Lim, Chichester

    Google Scholar 

  • Barney G (2003) Elevator handbook theory and practice. London Spon Press, London

    Book  Google Scholar 

  • Barney G, Al-Sharif L (2003) Elevator traffic handbook: theory and practice. Taylor & Francis, London

    Book  Google Scholar 

  • Barney G, Imrak E (2001) The application of neural networks to lift traffic control. Elev World 49:82

    Google Scholar 

  • Beamurgia M, Basagoiti R, Rodríguez I, Rodriguez V (2016) A modified genetic algorithm applied to the elevator dispatching problem. Soft Comput 20:3595–3609. https://doi.org/10.1007/s00500-015-1718-1

    Article  Google Scholar 

  • Beielstein T, Ewald CP, Markon S (2003b) Optimal elevator group control by evolution strategies. Genet Evol Comput Conf 2724:1963–1974. https://doi.org/10.1007/3-540-45110-2_95

    Article  MATH  Google Scholar 

  • Beielstein T, Markon S, Preuss M (2003a) A parallel approach to elevator optimization based on soft computing. In: Proceedings 5th Metaheuristics international conference (MIC’03). Kyoto, Japan

  • Bernard A (2014) Lifted: acultural history of the elevator

  • Beyer HG (2007) Evolution strategies. Scholarpedia 2:1965

    Article  Google Scholar 

  • Biswas K, Vasant PM, Vintaned JAG, Watada J (2020) A Review of metaheuristic algorithms for optimizing 3D well-path designs. Arch Comput Methods Eng. https://doi.org/10.1007/s11831-020-09441-1

    Article  Google Scholar 

  • Bolat B, Cortés P (2011) Genetic and tabu search approaches for optimizing the hall call—car allocation problem in elevator group systems. Appl Soft Comput 11:1792–1800. https://doi.org/10.1016/j.asoc.2010.05.023

    Article  Google Scholar 

  • Bolat B, Cortés P, Yalçin E, Alişverişçi M (2010) Optimal car dispatching for elevator groups using genetic algorithms. Intell Autom Soft Comput 16:89–99. https://doi.org/10.1080/10798587.2010.10643066

    Article  Google Scholar 

  • Bolat B, Altun O, Cortés P (2013) A particle swarm optimization algorithm for optimal car-call allocation in elevator group control systems. Appl Soft Comput 13:2633–2642. https://doi.org/10.1016/j.asoc.2012.11.023

    Article  Google Scholar 

  • Bolat B, Cortés P (2012) Pso and Tabu search approaches for the car allocation problem in multi-car elevator systems. In: 16th International Research Conference Trends Development Machinery Associated Technology TMT, pp 10–12

  • Chambers LD (2019) Practical handbook of genetic algorithms: complex coding systems. CRC Press

    Book  Google Scholar 

  • Chan WL, So AT, Lam KC (1996) Dynamic zoning for intelligent supervisory control. Int J Elev Eng 1:47–59

    Google Scholar 

  • Chegini SN, Bagheri A, Najafi F (2018) PSOSCALF: a new hybrid PSO based on Sine Cosine Algorithm and Levy flight for solving optimization problems. Appl Soft Comput J 73:697–726

    Article  Google Scholar 

  • Chen TC, Hsu YY, Huang YJ (2012) Optimizing the intelligent elevator group control system by using genetic algorithm. Adv Sci Lett 9:957–962. https://doi.org/10.1166/asl.2012.2654

    Article  Google Scholar 

  • Chen TC, Hsu YY, Lee AC, Wang SY (2013) GA based hybrid fuzzy rule optimization approach for elevator group control system. Trans Can Soc Mech Eng 37:937–947. https://doi.org/10.1139/tcsme-2013-0080

    Article  Google Scholar 

  • Chen TC, Lee AC, Huang SL (2015) FCM based hybrid evolutionary computation approach for optimization power consumption by varying cars in EGCS. Appl Math Model 39:5917–5924. https://doi.org/10.1016/j.apm.2015.04.025

    Article  MATH  Google Scholar 

  • Closs GD (1970) The computer control of passenger traffic in large lift systems. PhD Dissertation, University of Manchester Institute of Science and Technology, UK

  • Cortes P, Larrañeta J, Onieva L (2003) A genetic algorithm for controlling elevator group systems. Int Work Artif Neural Netw 2687:313–320. https://doi.org/10.1007/3-540-44869-1_40

    Article  Google Scholar 

  • Cortes P, Guadix J, Munuzuri J (2009) A state of the art on the most relevant patents in vertical transportation in buildings. Recent Patents Comput Sci 2:96–110. https://doi.org/10.2174/1874479610902020096

    Article  Google Scholar 

  • Cortes P, Onieva L, Munuzuri J, Guadix J (2013) A viral system algorithm to optimize the car dispatching in elevator group control systems of tall buildings. Comput Ind Eng 64:403–411. https://doi.org/10.1016/j.cie.2012.11.002

    Article  Google Scholar 

  • Cortés P, Larrañeta J, Onieva L (2004) Genetic algorithm for controllers in elevator groups: analysis and simulation during lunchpeak traffic. Appl Soft Comput 4:159–174

    Article  Google Scholar 

  • Cortés P, Muñuzuri J, Onieva L (2006) Design and analysis of a tool for planning and simulating dynamic vertical transport. SIMULATION 82:255–274

    Article  Google Scholar 

  • Cortés P, García JM, Muñuzuri J, Onieva L (2008) Viral systems: a new bio-inspired optimisation approach. Comput Oper Res 35:2840–2860. https://doi.org/10.1016/j.cor.2006.12.018

    Article  MATH  Google Scholar 

  • Cortés P, García JM, Muñuzuri J, Guadix J (2010) A viral system massive infection algorithm to solve the Steiner tree problem in graphs with medium terminal density. Int J Bio Inspir Comput 2:71–77

    Article  Google Scholar 

  • Cortés P, Fernández JR, Guadix J, Munuzuri J (2012a) Fuzzy logic based controller for peak traffic detection in elevator systems. J Comput Theor Nanosci 9:310–318. https://doi.org/10.1166/jctn.2012.2025

    Article  Google Scholar 

  • Cortés P, García JM, Muñuzuri J, Guadix J (2012b) Viral system algorithm: foundations and comparison between selective and massive infections. Trans Inst Meas Control 34:677–690

    Article  Google Scholar 

  • Cortés P, Muñuzuri J, Vázquez-Ledesma A, Onieva L (2021) Double deck elevator group control systems using evolutionary algorithms: interfloor and lunchpeak traffic analysis. Comput Ind Eng. https://doi.org/10.1016/j.cie.2021.107190

    Article  Google Scholar 

  • Dai D, Zhang J, Xie W, Yin Z, Zhang Y (2010) Elevator group-control policy with destination registration based on hybrid genetic algorithms. In: 2010 International Conference Computer Application System Modeling 2010, 12:535–538. https://doi.org/10.1109/ICCASM.2010.5622390

  • Davis L (1991) Handbook of genetic algorithms. Van Nostrand Reinhold, New York

    Google Scholar 

  • Dhiman G, Kumar V (2017) Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications. Adv Eng Softw 114:48–70. https://doi.org/10.1016/j.advengsoft.2017.05.014

    Article  Google Scholar 

  • Ding B, Li QC, Zhang J, Liu XF (2013) Twin elevator group optimization dispatching based on genetic algorithm. Appl Mech Mater 415:95–100. https://doi.org/10.4028/www.scientific.net/AMM.415.95

    Article  Google Scholar 

  • Dorigo M, Stützle T (2019) Ant Colony optimization: overview and recent advances. In: Gendreau M, Potvin JY (eds) Handbook of metaheuristics. Springer, New York, pp 311–351

    Chapter  Google Scholar 

  • Dorigo M, Maniezzo V, Colorni A (1996) Ant system: Optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern Part B Cybern 26:29–41. https://doi.org/10.1109/3477.484436

    Article  Google Scholar 

  • Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization. IEEE Comput Intell Mag 1:28–39. https://doi.org/10.1145/1830761.1830899

    Article  Google Scholar 

  • Dorigo M, Gambardella LM, Middendorf M, Stützle T (2002) Guest editorial: special section on ant colony optimization

  • Eguchi T, Hirasawa K, Hu J, Markon S (2004) Elevator group supervisory control systems using genetic network programming. In: Proceedings of the 2004 congress on evolutionary computation, CEC2004. IEEE, pp 1661–1667

  • Eguchi T, Hirasawa K, Hu J, Markon S (2005) Elevator group supervisory control system using genetic network programming with functional localization. In: IEEE Congress evolitonary computation IEEE CEC 2005 proceedings, 1:328–335 . https://doi.org/10.20965/jaciii.2006.p0385

  • Ekinci S, Izci D, Abualigah L (2023) A novel balanced Aquila optimizer using random learning and Nelder–Mead simplex search mechanisms for air–fuel ratio system control. J Braz Soc Mech Sci Eng. https://doi.org/10.1007/s40430-022-04008-6

    Article  Google Scholar 

  • Elbes M, Alzubi S, Kanan T, Al-Fuqaha A, Hawashin B (2019) A survey on particle swarm optimization with emphasis on engineering and network applications. Evol Intell 12:113–129

    Article  Google Scholar 

  • Fathy A (2018) Recent meta-heuristic grasshopper optimization algorithm for optimal reconfiguration of partially shaded PV array. Sol Energy 171:638–651. https://doi.org/10.1016/j.solener.2018.07.014

    Article  Google Scholar 

  • Fernández J, Cortés P, Munuzuri J, Guadix J (2014) Dynamic fuzzy logic elevator group control system with relative waiting time consideration. IEEE Trans Ind Electron 61:4912–4919. https://doi.org/10.1109/TIE.2013.2289867

    Article  Google Scholar 

  • Fernandez JR, Cortes P (2015) A survey of elevator group control systems for vertical transportation: a look at recent literature. IEEE Control Syst Mag 35:38–55. https://doi.org/10.1109/MCS.2015.2427045

    Article  Google Scholar 

  • Fu L, Zhou C (2012) Optimal dispatch control simulation of elevator group control system. Comput Simul 4(29):263–267

    Google Scholar 

  • Fujino A, Tobita T, Segawa K, Kenji Y, Togawa A (1997) An elevator group control system with floor-attribute control method and system optimization using genetic algorithms. IEEE Trans Ind Electron 44:546–552. https://doi.org/10.1109/41.605632

    Article  Google Scholar 

  • Gandomi AH, Yang XS, Alavi AH (2013) Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng Comput 29:17–35

    Article  Google Scholar 

  • Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. SIMULATION 76:60–68

    Article  Google Scholar 

  • Gharieb W (2005) Optimal elevator group control using genetic algorithms. Citeseer Comput Syst Eng Dept, Fac Eng Ain Shams Univ

  • Glover F (1989) Tabu search—part I. ORSA J Comput 1:190–206. https://doi.org/10.1287/ijoc.1.3.190

    Article  MATH  Google Scholar 

  • Glover F, Laguna M (1998) Tabu search. In: Du D, Pardalos PM (eds) Handbook of combinatorial optimization. Springer, Boston, pp 2093–2229

    Chapter  Google Scholar 

  • Gu Y (2012) Multi-objective optimization of multi-agent elevator group control system based on real-time particle swarm optimization algorithm. Engineering 04:368–378. https://doi.org/10.4236/eng.2012.47048

    Article  Google Scholar 

  • Gudwin RR, Gomide FAC (1994) Genetic algorithms and discrete event systems: an application. In: IEEE Conference on evolutionary computation – proceedings, pp 742–745

  • Gudwin R, Gomide F, Netto MA (1998) A fuzzy elevator group controller with linear context adaptation. In: 1998 IEEE International conference on fuzzy systems proceedings - IEEE world congress on computational intelligence, pp 481–486

  • Han Q, Zhang L (2012) The scheduling of the elevator group control system modeling and simulation based on PSO. Appl Mech Mater 229:2306–2310. https://doi.org/10.4028/www.scientific.net/AMM.229-231.2306

    Article  Google Scholar 

  • Hanif M, Mohammad N (2022a) Artificial bee colony and genetic algorithm for optimization of non-smooth economic load dispatch with transmission loss. In: Proceedings of the international conference on big data, IoT, and machine learning. Springer, Singapore, pp 271–287

  • Hanif M, Mohammad N (2022b) Performance analysis of particle swarm optimization and genetic algorithm in energy-saving elevator group control system. In: Proceedings of the international conference on big data, IoT, and machine learning. Springer, pp 497–511

  • Hanif M, Mohammad N, Ahmmed KT (2021) Artificial Bee colony algorithm for optimization in energy-saving elevator group control system. In: 3rd International conference on electrical and electronic engineering, ICEEE 2021. pp 97–100

  • Hanif M, Mohammad N, Biswas K (2023) Seagull optimization algorithm for solving economic load dispatch problem. In: 2023 International conference on electrical, computer and communication engineering (ECCE). IEEE, 2023, pp 1–6

  • Harun HB, Islam MS, Hanif M (2022) Genetic algorithm for efficient cluster head selection in LEACH protocol of wireless sensor network. In: 2022 International conference on advancement in electrical and electronic engineering, ICAEEE 2022

  • Hasan MZ, Fink R, Suyambu MR, Baskaran MK (2012) Assessment and improvement of elevator controllers for energy efficiency. In: 2012 IEEE 16th International symposium on consumer electronics. IEEE, pp 1–8

  • He W, Li G, Qian W (2007) Application of improved genetic algorithm in control of elevator group. J Bohai Univ Sci Ed. 1

  • Hirasawa K, Eguchi T, Zhou ZJ, Yu L, Hu J, Markon S (2008) A double-deck elevator group supervisory control system using genetic network programming. IEEE Trans Syst Man Cybern Part C Appl Rev 38:535–550. https://doi.org/10.1109/TSMCC.2007.913904

    Article  Google Scholar 

  • Ho M, Robertson B (1994) Elevator group supervisory control using fuzzy logic. In: 1994 Proceedings of Canadian conference on electrical and computer engineering. IEEE, pp 825–828

  • Holland JH (1975) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence

  • Hu Z, Liu Y, Su Q, Huo J (2010) A multi-objective genetic algorithm designed for energy saving of the elevator system with complete information. In: 2010 IEEE International energy conference. IEEE, pp 126–130

  • Jamaludin J, Rahim N, Hew W (2010) An elevator group control system with a self-tuning fuzzy logic group controller. Trans Ind Electron 5712(57):4188–4198

    Article  Google Scholar 

  • Jayadeva SS, Bhaya A, Kothari R, Chandra S (2013) Ants find the shortest path: a mathematical proof. Swarm Intell 7:43–62. https://doi.org/10.1007/s11721-013-0076-9

    Article  Google Scholar 

  • Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim 39:459–471. https://doi.org/10.1007/s10898-007-9149-x

    Article  MathSciNet  MATH  Google Scholar 

  • Kari J (2005) Theory of cellular automata: a survey. Theor Comput Sci 334:3–33. https://doi.org/10.1016/j.tcs.2004.11.021

    Article  MathSciNet  MATH  Google Scholar 

  • Kennedy J, Russell E (1995) Particle swarm optimization. In: Proceedings of ICNN’95-international conference on neural networks, IEEE. IEEE, pp 1942–1948

  • Kennedy J, Russell E, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN’95-international conference on neural networks, IEEE. IEEE, pp 1942–1948

  • Kim C, Seong KA, Lee-Kwang H, Kim JO (1998) Design and implementation of a fuzzy elevator group control system. IEEE Trans Syst Man Cybern Part A Syst Humans 28:277–287. https://doi.org/10.1109/3468.668960

    Article  Google Scholar 

  • Knowles JD, Corne DW (2000) Approximating the nondominated front using the Pareto archived evolution strategy. Evol Comput 8:149–172

    Article  Google Scholar 

  • Koza JR (1992) Genetic programming as a means for programming computers by natural selection. Kluwer Academic Publishers, Alphen aan den Rijn

    MATH  Google Scholar 

  • Kubota N, Fukuda T, Shimojima K (1996) Virus-evolutionary genetic algorithm for a self-organizing manufacturing system. Comput Ind Eng 30:1015–1026

    Article  Google Scholar 

  • Kumar M, Husain M, Upreti N, Gupta D (2010) Genetic algorithm: review and application. Int J Inf Technol Knowl Manag 2:451–454. https://doi.org/10.2139/ssrn.3529843

    Article  Google Scholar 

  • Le Y, Shifeng Y, Huanhuan L, Zhicheng L, Xiaobing H (2020) Research on elevator group optimal dispatch based on ant colony algorithm. In: 2020 International conference on artificial intelligence and electromechanical automation (AIEA). IEEE, pp 99–102

  • Lee Y, Kim TS, Cho HS, Sung DK, Choi BD (2009) Performance analysis of an elevator system during up-peak. Math Comput Model 49:423–431. https://doi.org/10.1016/j.mcm.2008.09.006

    Article  MathSciNet  MATH  Google Scholar 

  • Lee S, Bahn H (2005) An energy-aware elevator group control system. In: 2005 3rd IEEE International conference on industrial informatics, INDIN’05. pp 639–643

  • Li Z (2010) Pso-based real-time scheduling for elevator group supervisory control system. Intell Autom Soft Comput 16:111–121. https://doi.org/10.1080/10798587.2010.10643068

    Article  Google Scholar 

  • Li XL, Shao ZJ, Qian JX (2002) Optimizing method based on autonomous animats: fish-swarm algorithm. Syst Eng Theory Pract 22:32–38

    Google Scholar 

  • Li Z, Zhang Y, Tan H (2007c) Particle swarm optimization for dynamic sectoring control during peak traffic pattern. In: Huang DS, Wunsch DC, Levine DS, Jo KH (eds) Advanced intelligent computing theories and applications With aspects of contemporary intelligent computing techniques. Springer, Heidelberg, pp 650–659

    Chapter  Google Scholar 

  • Li Z, Mao Z, Wu J (2004) Research on dynamic zoning of elevator traffic based on artificial immune algorithm. In: 2004 8th International Conference Control Automation Robotics Vision, 3:2170–2175

  • Li Z, Tan HZ, Zhang Y (2007a) Particle swarm optimization applied to vertical traffic scheduling in buildings. In: Lecture Notes in computer science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Springer Verlag, Berlin, pp 831–838

  • LI G, HE W, QIAN. W (2007b) Improved particle swarm optimization for elevator group control system. J Bohai Univ (Natural Sci Ed ) 1

  • Liu J, Bai ZL, Gu MH, Zhang X, Zhang R (2014) The research of multi-car elevator control method based on PSO-GA. Appl Mech Mater 556–562:2418–2421. https://doi.org/10.4028/www.scientific.net/AMM.556-562.2418

    Article  Google Scholar 

  • Liu J, Liu Y (2007) Ant colony algorithm and fuzzy neural network-based intelligent dispatching algorithm of an elevator group control system. In: IEEE International conference on control and automation, ICCA. IEEE, pp 2306–2310

  • Liu Y, Hu Z, Su Q, Huo J (2010) Energy saving of elevator group control based on optimal zoning strategy with interfloor traffic. In: 2010 3rd International conference on information management, innovation management and industrial engineering. IEEE, pp 328–331

  • Liu J, Wu C, Liu M, Gao E, Fu G (2011) RBF optimization control based on PSO for elevator group system. In: International conference on information science and technology, ICIST 2011. IEEE, pp 363–368

  • Luh PB, Xiong B, Chang SC (2008) Group elevator scheduling with advance information for normal and emergency modes. IEEE Trans Autom Sci Eng 5:245–258. https://doi.org/10.1109/TASE.2007.895217

    Article  Google Scholar 

  • Luo F, Lin X, Xu Y, Li H (2008) Hybrid elevator group control system based on immune particle swarm hybrid optimization algorithm with full digital keypads. In: Proceedings of the 7th world congress on intelligent control and automation (WCICA), pp 1482–1487

  • Luo F, Zhao X, Xu Y (2010) A new hybrid elevator group control system scheduling strategy based on Particle Swarm simulated annealing optimization algorithm. In: Proceedings World Congress Intelligent Control Automatiom, pp 5121–5124. https://doi.org/10.1109/WCICA.2010.5554939

  • Mabu S, Hirasawa K, Hu J (2007) A graph-based evolutionary algorithm: genetic network programming (GNP) and its extension using reinforcement learning. In: Evolutionary computation, pp 369–398

  • Mahapatra PK, Ganguli S, Kumar A (2015) A hybrid particle swarm optimization and artificial immune system algorithm for image enhancement. Soft Comput 19:2101–2109

    Article  Google Scholar 

  • Markon S, Suzuki H, Ikeda K, Kita H (2007) Direct control of multi-car elevators with real-time GA. In: 11th International conference on intelligent engineering systems, INES 2007. IEEE, Budapest, Hungary, pp 191–194

  • Martin T (2007) Embedded systems: definitions, taxonomies, field

  • Miravete A (1999) Genetics and intense vertical traffic. Elev World 47:118–121

    Google Scholar 

  • Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  • Muñoz DM, Llanos CH, Ayala-Rincón M, van Els RH (2008) Distributed approach to group control of elevator systems using fuzzy logic and FPGA implementation of dispatching algorithms. Eng Appl Artif Intell 21:1309–1320. https://doi.org/10.1016/j.engappai.2008.04.014

    Article  Google Scholar 

  • Nagatani T (2011) Complex motion in nonlinear-map model of elevators in energy-saving traffic. Phys Lett Sect A Gen at Solid State Phys Elsevier 375:2047–2050. https://doi.org/10.1016/j.physleta.2011.04.006

    Article  MATH  Google Scholar 

  • Neshat M, Adeli A, Sepidnam G, Sargolzaei M, Toosi AN (2012) A review of artificial fish swarm optimization methods and applications. Int J Smart Sens Intell Syst 5:107–148. https://doi.org/10.21307/ijssis-2017-474

    Article  Google Scholar 

  • Neshat M, Sepidnam G, Sargolzaei M, Toosi AN (2014) Artificial fish swarm algorithm: a survey of the state-of-the-art, hybridization, combinatorial and indicative applications. Artif Intell Rev 42:965–997. https://doi.org/10.1007/s10462-012-9342-2

    Article  Google Scholar 

  • Nesmachnow S (2014) An overview of metaheuristics: accurate and efficient methods for optimisation. Int J Metaheuristics 3:320–347. https://doi.org/10.1504/ijmheur.2014.068914

    Article  Google Scholar 

  • Oner Tartan E, Ciftlikli C (2016) A genetic algorithm based elevator dispatching method for waiting time optimization. IFAC-PapersOnLine 49:424–429. https://doi.org/10.1016/j.ifacol.2016.07.071

    Article  Google Scholar 

  • Perez-Martinez KY, Maury-Otero SR, López-Pereira JM (2008) Viral system aplicado al problema de ruteo de vehículos con flota heterogénea y ventanas de tiempo (FSMVRPTW). In: XLIII Simp. Bras. Pesqui. Operacional

  • Qun Z, Ding S, Yu C, Xiaofeng L (2001) Elevator group control system modeling based on object-oriented Petri net. Elev World 49:99–105

    Google Scholar 

  • Rahmati S, Hajipour V, Niaki S (2013) A soft-computing Pareto-based meta-heuristic algorithm for a multi-objective multi-server facility location problem. Appl Soft Comput 13:1728–1740

    Article  Google Scholar 

  • Salkuti SR (2019) Optimal location and sizing of DG and D-STATCOM in distribution networks. Indones J Electr Eng Comput Sci 16:1107–1114

    Google Scholar 

  • Shapiro AF (2002) The merging of neural networks, fuzzy logic, and genetic algorithms. Insur Math Econ 31:115–131. https://doi.org/10.1016/S0167-6687(02)00124-5

    Article  MathSciNet  Google Scholar 

  • Shen H, Wan J, Zhang Z, Liu Y, Li G (2009) Elevator group-control policy based on neural network optimized by genetic algorithm. Trans Tianjin Univ 15:245–248. https://doi.org/10.1007/s12209-009-0043-0

    Article  Google Scholar 

  • Siikonen ML, Korhonen T (1993) Defining the traffic mode of an elevator, based on traffic statistical data and traffic type definitions

  • Sorsa J (2019) Real-time algorithms for the bilevel double-deck elevator dispatching problem. EURO J Comput Optim 7:79–122. https://doi.org/10.1007/s13675-018-0108-8

    Article  MathSciNet  MATH  Google Scholar 

  • Sorsa J, Siikonen ML, Ehtamo H (2003) Optimal control of double-deck elevator group using genetic algorithm. Int Trans Oper Res 10:103–114. https://doi.org/10.1111/1475-3995.00397

    Article  MathSciNet  MATH  Google Scholar 

  • Sorsa J, Ehtamo H, Kuusinen JM, Ruokokoski M, Siikonen ML (2018) Modeling uncertain passenger arrivals in the elevator dispatching problem with destination control. Optim Lett 12:171–185. https://doi.org/10.1007/s11590-017-1130-0

    Article  MathSciNet  MATH  Google Scholar 

  • Sorsa J (2017) A real-time genetic algorithm for the bilevel double-deck elevator dispatching problem. EURO J Comput Optim

  • Strakosch GR (1998) The vertical transportation handbook. John Wiley & Sons Inc

    Book  Google Scholar 

  • Sun J, Zhao QC, Luh PB (2010) Optimization of group elevator scheduling with advance information. IEEE Trans Autom Sci Eng 7:352–363

    Article  Google Scholar 

  • Suryadi D, Kartika EK (2011) Viral systems application for Knapsack problem. In: Proceedings - 3rd international conference on computational intelligence, communication systems and networks, CICSyN 2011, pp 11–16

  • Tartan EO, Erdem H, Berkol A (2014) Optimization of waiting and journey time in group elevator system using genetic algorithm. In: 2014 IEEE international symposium on innovations in intelligent systems and applications (INISTA) proceedings. IEEE, pp 361–367

  • Tervonen T, Hakonen H, Lahdelma R (2008) Elevator planning with stochastic multicriteria acceptability analysis. Omega 36:352–362. https://doi.org/10.1016/j.omega.2006.04.017

    Article  Google Scholar 

  • Tobita T, Fujino A, Segawa K, Yoneda K, Ichikawa Y (1998) A parameter tuning method for an elevator group control system using a genetic algorithm. Electr Eng Japan 124:55–64. https://doi.org/10.1002/(SICI)1520-6416(19980715)124:1%3c55::AID-EEJ7%3e3.0.CO;2-J

    Article  Google Scholar 

  • Tyni T, Ylinen J (2001) Genetic algorithms in elevator car routing problem. In: Proceedings of the genetic and evolutionary computation conference (GECCO-2001). Morgan Kaufman Publishers, San Francisco, CA, USA, pp 1413–1422

  • Tyni T, Ylinen J (2004) Evolutionary bi-objective controlled elevator group regulates passenger service level and minimises energy consumption. In: International conference parallel problem solving from nature, Springer Verlag 3242:822–831. https://doi.org/10.1007/978-3-540-30217-9_83

  • Tyni T, Ylinen J (2006) Evolutionary bi-objective optimisation in the elevator car routing problem. Eur J Oper Res 169:960–977. https://doi.org/10.1016/j.ejor.2004.08.027

    Article  MathSciNet  MATH  Google Scholar 

  • Wang Q, Automation ZL-CT and, 2009 U (2009) Research on elevator group control strategy based on ant colony optimization algorithm. Comput Technol Autom 28:42–44

    Google Scholar 

  • Wang H, Li Q, Zheng Y (2013) Elevator group control dispatch algorithm based on artificial fish-swarm algorithm. J Mech Electr Eng 30:888–892

    Google Scholar 

  • Wang GG, Deb S, Coelho LDS (2015) Elephant herding optimization. In: Proceedings of 3rd international symposium on computational and business intelligence (ISCBI). IEEE, pp 1–5

  • Wang C, Hu M, Chen H (2016) Energy saving of elevator group under up-peak flow based on Geese-PSO. In: Proceedings - 2016 7th international conference on cloud computing and big data, CCBD 2016. IEEE, pp 209–213

  • Xm H, Li ZJ, Hu X-M, Zhang J, Li Y (2008) Orthogonal methods based ant colony search for solving continuous optimization problems

  • Xu Y, Luo F, Wang J (2004) A new modeling method for elevator group control system with cellular automata. In: Proceedings of the World congress on intelligent control and automation (WCICA). IEEE, pp 3596–3599

  • Xu Y, Luo F, Lin X (2010) Hybrid destination registration elevator group control system with artificial immune optimization algorithm. In: Proceedings World Congress Intelligent Control Automation, pp 5067–5071. https://doi.org/10.1109/WCICA.2010.5554592

  • Yang XS, He X (2013) Bat algorithm: literature review and applications. Int J Bio Inspir Comput 5:141–149

    Article  Google Scholar 

  • Yang B, Wang J, Zhang X, Yu T, Yao W, Shu H, Zeng F, Sun L (2020) Comprehensive overview of meta-heuristic algorithm applications on PV cell parameter identification. Energy Convers Manag. https://doi.org/10.1016/j.enconman.2020.112595

    Article  Google Scholar 

  • Yang Z, Shao C, Li G (2007) Multi-objective optimization for EGCS using improved PSO algorithm. In: Proceedings of the American control conference, pp 5059–5063

  • Yan-wu G. (2012) Distributed Elevator group control system scheduling based on real-time particle swarm optimization algorithm. Comput Sci

  • Yildiz AR, Abderazek H, Mirjalili S (2019) A comparative study of recent non-traditional methods for mechanical design optimization. Arch Comput Methods Eng. https://doi.org/10.1007/s11831-019-09343-x

    Article  Google Scholar 

  • Ylinen J, Tyni T (2001) Genetic procedure for multi-deck elevator call allocation. U.S. Pat. 6,293,368 B1

  • Yu L, Zhou J, Mabu S, Hirasawa K, Hu J, Markon S (2007a) Double-deck elevator group supervisory control system using genetic network programming with ant colony optimization. J Adv Comput Intell Intell Inform 11:1149–1158. https://doi.org/10.1109/CEC.2007.4424581

    Article  Google Scholar 

  • Yu L, Mabu S, Hirasawa K, Ueno T (2011) Analysis of energy consumption of elevator group supervisory control system based on genetic network programming. IEEJ Trans Electr Electron Eng 6:414–423. https://doi.org/10.1002/tee.20677

    Article  Google Scholar 

  • Yu L, Zhou J, Mabu S, Hirasawa K, Hu J, Markon S (2007b) Elevator group control system using genetic network programming with ACO considering transitions. In: Proceedings SICE Annual Conference, pp 1330–1336. https://doi.org/10.1109/SICE.2007.4421189

  • Yu L, Zhou J, Ye F, Mabu S, Shimada K, Hirasawa K (2008) Double-deck elevator system using genetic network programming with genetic operators based on pheromone information. In: GECCO’08: Proceedings of the 10th annual conference on genetic and evolutionary computation 2008. Association for Computing Machinery (ACM), pp 2239–2244

  • Yu L, Mabu S, Zhou J, Eto S, Hirasawa K (2010a) Double-deck elevator systems with idle cage assignment using genetic network programming. In: Conference Proceedings - IEEE International Conference Systems Man Cybernetics, pp 1987–1994. https://doi.org/10.1109/ICSMC.2010.5641729

  • Yu L, Mabu S, Zhou J, Eto S, Kotaro H (2010b) A double-decker elevator systems controller with idle cage assignment algorithm using genetic network programming. In: Proceedings of the 12th annual conference genetic evolutionary computation, pp 1313–1314

  • Zhang J, Zong Q (2013) Energy-saving scheduling optimization under up-peak traffic for group elevator system in building. Energy Build 66:495–504. https://doi.org/10.1016/j.enbuild.2013.07.069

    Article  Google Scholar 

  • Zhang W, Li G, Zhang W, Liang J, Yen GG (2019) A cluster based PSO with leader updating mechanism and ring-topology for multimodal multi-objective optimization. Swarm Evol Comput. https://doi.org/10.1016/j.swevo.2019.100569

    Article  Google Scholar 

  • Zhang T, Mabu S, Yu L, Zhou J, Zhang X, Hirasawa K (2009) Energy saving elevator group supervisory control system with idle cage assignment using genetic network programming. In: Proceedings of the 2009 ICCAS-SICE, pp 994–999

  • Zhang JL, Tang J, Zong Q, Li JF (2010) Energy-saving scheduling strategy for elevator group control system based on ant colony optimization. In: Proceedings - 2010 IEEE Youth Conference Information, Computing Telecommunications YC-ICT 2010, pp 37–40. https://doi.org/10.1109/YCICT.2010.5713146

  • Zhang J, Zong Q, Wang F, Li J (2011) Elevator group scheduling for peak flows based on Adjustable Robust Optimization model. In: 2011 Chinese control and decision conference, (CCDC). IEEE, pp 1593–1598

  • Zheng ZX, Li JQ, Duan PY (2019) Optimal chiller loading by improved artificial fish swarm algorithm for energy saving. Math Comput Simul 155:227–243. https://doi.org/10.1016/j.matcom.2018.04.013

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou J, Yu L, Mabu S, Hirasawa K, Hu J, Markon S (2007) Elevator group supervisory control system using genetic network programming with macro nodes and reinforcement learning. IEEJ Trans Electron Inf Syst 127:1234–1242. https://doi.org/10.1541/ieejeiss.127.1234

    Article  Google Scholar 

  • Zhou J, Yu L, Mabu S, Shimada K, Hirasawa K, Markon S (2009) A study of double-deck elevator systems using genetic network programming with reinforcement learning. J Adv Comput Intell Intell Inform 13:35–44. https://doi.org/10.20965/jaciii.2009.p0035

    Article  Google Scholar 

  • Zhou J, Eguchi T, Mabu S, Hirasawa K, Hu J, Markon S (2006) A study of applying genetic network programming with reinforcement learning to elevator group supervisory control system. In: 2006 IEEE congress on evolutionary computation, CEC 2006, pp 3035–3041

Download references

Funding

Funding information is not applicable/No funding was received.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization was contributed by M.H. and N.M.; methodology was contributed by M.H.; formal analysis was contributed by M.H; investigation was contributed by M.H.; resources were contributed by M.H.; data curation was contributed by M.H.; writing—original draft preparation was contributed by M.H.; writing—review and editing was contributed by N.M.; visualization was contributed by M.H.; supervision was contributed by N.M.

Corresponding author

Correspondence to Mohammad Hanif.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this article.

Ethical approval

The authors declare that the submitted manuscript is original and has not been submitted simultaneously in another journal.

Informed consent

Both authors voluntarily participate in this research. All of the previous research on EGCS are briefly summarized and analyzed in this study. Both authors have read and agreed to the version of the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanif, M., Mohammad, N. Metaheuristic algorithms for elevator group control system: a holistic review. Soft Comput 27, 15905–15936 (2023). https://doi.org/10.1007/s00500-023-08843-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-023-08843-0

Keywords

Navigation