Skip to main content
Log in

Semantic segmentation-based skin cancer detection

  • Focus
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Melanoma detection requires dermoscopy image segmentation, one of the medical image segmentation domains. Melanoma, the most dangerous form of skin cancer, can strike without warning on healthy skin or grow from a pre-existing lesion. Skin lesion border segmentation is required to find lesion locations in histopathologic imaging effectively. True, accurate skin lesion segmentation remains challenging due to blurring boundaries, necessitating an accurate and automated skin lesion segmentation approach. Semantic segmentation using deep learning architecture has been effectively employed in this paper for the desired task. The segmentation of the skin lesson is performed using u-net-based deep learning model and analyzed using standard and valid evaluation metrics. The simulation is carried out on the available dataset and implemented on the Python Collab® tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability and materials

The data are available upon the request.

References

  • Burroni M, Sbano P, Cevenini G, Risulo M, Dell’Eva G, Barbini P, Miracco C, Fimiani M, Andreassi L, Rubegni P (2005) Dysplastic naevus vs. in situ melanoma: digital dermoscopy analysis. Br J Dermatol 152(4):679–684

    Article  Google Scholar 

  • Cancer Facts and Figures 2022. [Online]. Available: https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2022.html. [Accessed May 2022]

  • Cancer Projected To Become Leading Cause Of Death Worldwide (2022) In 2010 Available: https://www.sciencedaily.com/releases/2008/12/081209111516.htm. [Accessed July 2022]

  • Caroline MO, Nicholas RT (2005) Skin cancer. Medicine 33(1):64–67

    Article  Google Scholar 

  • Celebi M, Aslandogan Y, Stoecker W, Iyatomi H, Oka H, Chen X (2007a) Unsupervised border detection in dermoscopy images. Skin Res Technol 13(4):454–462

    Article  Google Scholar 

  • Celebi M, Kingravi H, Uddin B, Iyatomi H, Aslandogan Y, Stoecker W, Moss R (2007b) A methodological approach to the classification of dermoscopy images. Comput Med Imag Graph 31(6):362–373

    Article  Google Scholar 

  • Celebi M, Iyatomi H, Stoecker W, Moss R, Rabinovitz H, Argenziano G, Soyer H (2008) Automatic detection of blue-white veil and related structures in Dermoscopy images. Comput Med Imag Graph 32(8):670–677

    Article  Google Scholar 

  • Di Leo G, Paolillo A, Sommella P, Fabbrocini G (2010) Automatic diagnosis of melanoma: a software system based on the 7-point check-list. In: 2010 43rd Hawaii international conference on system sciences, Hawaii

  • Di Meo N, Stinco G, Bonin S, Gatti A, Trevisini S, Damiani G, Vichi S, Trevisan G (2016) CASH algorithm versus 3-point checklist and its modified version in evaluation of melanocytic pigmented skin lesions: the 4-point checklist. J Dermatol 6:682–685

    Article  Google Scholar 

  • Dreiseitl S, Ohno-Machado L, Kittler H, Vinterbo S, Billhardt H, Binder M (2001) A comparison of machine learning methods for the diagnosis of pigmented skin lesions. J Biomed Inform 34(1):28–36

    Article  Google Scholar 

  • Fabbrocin G, Betta G, Leo G, Liguor C, Paolillo A, Pietrosanto A, Sommella P, Rescigno O, Cacciapuoti S, Pastore F, Vita V, Mordente I, Ayala F (2010) Epiluminescence image processing for melanocytic skin lesion diagnosis based on 7-point check-list: a preliminary discussion on three parameters. Open Derm J 4:110–115

    Article  Google Scholar 

  • Faziloglu Y, Stanley R, Moss R, Stoecker W, McLean R (2003) Colour histogram analysis for melanoma discrimination in clinical images. Skin Res Technol 9(2):147–156

    Article  Google Scholar 

  • Gordon R (2013) Skin cancer: an overview of epidemiology and risk factors. Semin Oncol Nurs 29(3):160–169

    Article  Google Scholar 

  • Iyatomi H, Oka H, Celebi M, Hashimoto M, Hagiwara M, Tanaka M, Ogawa K (2008) An improved internet-based melanoma screening system with dermatologist-like tumor area extraction algorithm. Comput Med Imag Graph 32(7):566–579

    Article  Google Scholar 

  • Kenet R, Fitzpatrick T (1994) Reducing mortality and morbidity of cutaneous melanoma: a six year plan. b). identifying high and low risk pigmented lesions using epiluminescence microscopy. J Dermatol 21(11):881–884

    Article  Google Scholar 

  • Madison K (2003) Barrier function of the skin: “la raison d’être” of the epidermis. J Invest Dermatol 121(2):231–241

    Article  Google Scholar 

  • Nachbar F, Stolz W, Merkle T, Cognetta AB, Vogt T, Landthaler M, Bilek P, Braun Falco O, Plewig G (1994) The ABCD rule of dermatoscopy: high prospective value in the diagnosis of doubtful melanocytic skin lesions. J Am Acad Dermatol 30(4):551–559

    Article  Google Scholar 

  • Proksch E, Brandner J, Jensen J (2008) The skin: an indispensable barrier. Exp Dermatol 17(12):1063–1072

    Article  Google Scholar 

  • Rescigno O, Cacciapuoti S, Pastore F, Vita V, Mordente I, Ayala F (2010) Epiluminescence image processing for melanocytic skin lesion diagnosis based on 7-point check-list: a preliminary discussion on three parameters. Open Derm J 4:110–115

    Article  Google Scholar 

  • Rubegni P, Cevenini G, Burroni M, Perotti R, Dell’Eva G, Sbano P, Miracco C, Luzi P, Tosi P, Barbini P et al (2002) Automated diagnosis of pigmented skin lesions. Int J Cancer 101(6):576–580

    Article  Google Scholar 

  • Seidenari S, Pellacani G, Grana C (2005) Pigment distribution in melanocytic lesionbimages: a digital parameter to be employed for computer-aided diagnosis. Skin ResbTechnol 11(4):236–241

    Article  Google Scholar 

  • Siegel R, Miller K, Jemal A (2017) Cancer statistics. CA Cancer J Clin 67(1):7–30

    Article  Google Scholar 

  • Situ N, Yuan X, Chen J, Zouridakis G (2008) Malignant melanoma detection by bag-of-features classification. In: 2008 30th annual international conference of the IEEE engineering in medicine and biology society

  • Stanley R, Stoecker W, Moss R (2007) A relative color approach to color discrimination for malignant melanoma detection in dermoscopy images. Skin Res Technol 13(1):62–72

    Article  Google Scholar 

  • Stoecker W, Gupta K, Stanley R, Moss R, Shrestha B (2005) Detection of asymmetric blotches (asymmetric structureless areas) in dermoscopy images of malignant melanoma using relative color. Skin Res Technol 11(3):179–184

    Article  Google Scholar 

  • Stoecker WV, Wronkiewiecz M, Chowdhury R, Stanley RJ, Xu J, Bangert A, Shresta B, Calcara DA, Rabinovitz HS, Oliviero M (2011) Detection of granularity in dermoscopy images of malignant melanoma using color and texture features. Comput Med Imag Graph 35(2):144–147

    Article  Google Scholar 

  • Stücker M, Struk A, Altmeyer P, Herde M, Baumgärtl H, Lübbers D (2002) The cutaneous uptake of atmospheric oxygen contributes significantly to the oxygen supply of human dermis and epidermis. J Physiol 538(3):985–994

    Article  Google Scholar 

  • Walter FM, Prevost AT, Vasconcelos J, Hall PN, Burrows NP, Morris HC, Kinmonth AL, Emery JD (2013) Using the 7-point checklist as a diagnostic aid for pigmented skin lesions in general practice: a diagnostic validation study. Br J Gen Pract 63(610):345–353

    Article  Google Scholar 

  • World Health Organization. [Online]. Available: http://www.who.int/en/. [Accessed June 2022]

Download references

Funding

There is no funding for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Renuka.

Ethics declarations

Conflict of interest

Conflicts of interest are not present.

Ethical approval

Ethical approval is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Renuka, N. Semantic segmentation-based skin cancer detection. Soft Comput 27, 11895–11903 (2023). https://doi.org/10.1007/s00500-023-08557-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-023-08557-3

Keywords

Navigation