Skip to main content
Log in

New methods for computing fuzzy eigenvalues and fuzzy eigenvectors of fuzzy matrices using nonlinear programming approach

  • Fuzzy Systems and Their Mathematics
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

In this paper, we propose a new method to obtain the eigenvalues and fuzzy triangular eigenvectors of a fuzzy triangular matrix \(\left( {\tilde{A}} \right)\), where the elements of the fuzzy triangular matrix are given. For this purpose, we solve 1-cut of a fuzzy triangular matrix \(\left( {\tilde{A}} \right)\) to obtain 1-cut of eigenvalues and eigenvectors. Considering the interval system \(\left[ {\tilde{A}} \right]_{\alpha } \left[ {\tilde{X}} \right]_{\alpha } = \left[ {\tilde{\lambda }} \right]_{\alpha } \left[ {\tilde{X}} \right]_{\alpha } 0 \le \alpha \le 1\) as α-cut of the fuzzy system \(\tilde{A}\tilde{X} = \tilde{\lambda }\tilde{X}\), to determine the left and right width of eigenvalues \(\left[ {\tilde{\lambda }} \right]_{\alpha }\) and eigenvector elements \(\left[ {\tilde{X}} \right]_{\alpha } 0 \le \alpha \le 1\), we make a system of linear and nonlinear equations and inequalities. And we propose nonlinear programming models to solve the system of linear and nonlinear equations and inequalities and to calculate \(\left[ {\tilde{\lambda }} \right]_{\alpha }\) and \(\left[ {\tilde{X}} \right]_{\alpha } 0 \le \alpha \le 1\). Furthermore, we define three other new eigenvalues (namely, fuzzy escribed eigenvalue, fuzzy peripheral eigenvalue, and fuzzy approximate eigenvalue) for a fuzzy triangular matrix (Ã) that the fuzzy eigenvalue and fuzzy eigenvector cannot be obtained based on interval calculations. Therefore, the fuzzy escribed eigenvalue which is placed in a tolerable fuzzy triangular eigenvalue set, the fuzzy peripheral eigenvalue placed in a controllable fuzzy triangular eigenvalue set, and the fuzzy approximate eigenvalue placed in an approximate fuzzy triangular eigenvalue set is defined in this paper. Finally, numerical examples are presented to illustrate the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  • Abbasbandy S, Ezzati R, Jafarian A (2006) LU decomposition method for solving fuzzy system of linear equations. Appl Math Comput 172:663–643

    MathSciNet  MATH  Google Scholar 

  • Abbasi F, Allahviranloo T (2022) Solving fully fuzzy linear system: a new solution concept. Inf Sci 589:608–635

    Article  Google Scholar 

  • Akram M et al (2021) Methods for solving LR-bipolar fuzzy linear systems. Soft Comput 25:85–108

    Article  MATH  Google Scholar 

  • Allahviranloo T, Ghanbari M (2010) Solving fuzzy linear systems by homotopy perturbation method. Int J Comput Cogn 8(2):24–30

    Google Scholar 

  • Allahviranloo T, Hooshangian L (2013) A method to find fuzzy eigenvalues and fuzzy eigenvectors of fuzzy matrix. Neural Comput Appl 23(3):1159–1167

    Article  Google Scholar 

  • Allahviranloo T, Salahshour S (2011) Fuzzy symmetric solutions of fuzzy linear systems. Appl Math Comput 235:4545–4553

    Article  MathSciNet  MATH  Google Scholar 

  • Allahviranloo T, Salahshour S, Khezerloo M (2011) Maximal- and minimal symmetric solutions of fully fuzzy linear systems. Appl Math Comput 235:4652–4662

    Article  MathSciNet  MATH  Google Scholar 

  • Allahviranloo T, Hosseinzade AA, Ghanbari M, Haghi E, Nuraei R (2014) On the new solutions for a fully fuzzy linear system. Soft Comput 18:95

    Article  MATH  Google Scholar 

  • Buckley JJ (1990) Fuzzy eigenvalues and input-output analysis. Fuzzy Sets Syst 34(2):187–195

    Article  MathSciNet  MATH  Google Scholar 

  • Buckley JJ (2002) Thomas Feuring, and Yoichi Hayashi, Solving fuzzy equations using evolutionary algorithms and neural nets. Soft Comput 6(2):116–123

    Article  Google Scholar 

  • Buckley JJ, Qu Y (1991) Solving system of linear fuzzy equations. Fuzzy Sets Syst 43:33–43

    Article  MathSciNet  MATH  Google Scholar 

  • Chen Y, Xiaobin G (2021) Solving complex LR-trapezoidal fuzzy linear systems. In: 2021 17th international conference on computational intelligence and security (CIS). IEEE

  • Chiao K-P (1998) Generalized fuzzy eigenvalue problems. Tamsui Oxford J Math Sci 14:31–37

    MathSciNet  MATH  Google Scholar 

  • Couillet R, Liao Z (2022) Random matrix methods for machine learning. Cambridge University Press

    Book  MATH  Google Scholar 

  • Dehghan M, Hashemi B, Ghatee M (2007) Solution of the fully fuzzy linear systems using iterative techniques. Chaos Solitons Fractals 34:316–336

    Article  MathSciNet  MATH  Google Scholar 

  • Erkan U (2021) A precise and stable machine learning algorithm: eigenvalue classification (Eigen Class). Neural Comput Appl 33(10):5381–5392

    Article  Google Scholar 

  • Friedman M, Ming M, Kandel A (1998) Fuzzy linear system. Fuzzy Sets Syst 96:209–261

    Article  MathSciNet  MATH  Google Scholar 

  • Friedman M, Ming Ma, Kandel A (2000) Duality in fuzzy linear systems. Fuzzy Sets Syst 109:55–58

    Article  MathSciNet  MATH  Google Scholar 

  • Goetschel R, Voxman W (1986) Elementary calculus. Fuzzy Sets Syst 18:31–43

    Article  MathSciNet  MATH  Google Scholar 

  • Hannachi A (2021) Patterns identification and data mining in weather and climate. Springer

    Book  Google Scholar 

  • Kar A et al (2022) Random matrix theory for complexity growth and black hole interiors. J High Energy Phys 1(2022):1–58

    MathSciNet  MATH  Google Scholar 

  • Kousika N, Premalatha K (2021) An improved privacy-preserving data mining technique using singular value decomposition with three-dimensional rotation data perturbation. J Supercomput 77(9):10003–10011

    Article  Google Scholar 

  • Liu S, Lou Y, Song P (2022) A new monotonicity for principal eigenvalues with applications to time-periodic patch models. SIAM J Appl Math 82(2):576–601

    Article  MathSciNet  MATH  Google Scholar 

  • Muzzioli S, Reynaerts H (2006) Fuzzy linear systems of the form A1x+B1=A2x+B2. Fuzzy Sets Syst 157:939–951

    Article  MATH  Google Scholar 

  • Najariyan M, Zhao Yi (2020) On the stability of fuzzy linear dynamical systems. J Franklin Inst 357(9):5502–5522

    Article  MathSciNet  MATH  Google Scholar 

  • Ostad-Ali-Askari K, Shayan M (2021) Subsurface drain spacing in the unsteady conditions by HYDRUS-3D and artificial neural networks. Arab J Geosci 14:1936

    Article  Google Scholar 

  • Ostad-Ali-Askari K et al (2017) Artificial neural network for modeling nitrate pollution of groundwater in marginal area of Zayandeh-rood River, Isfahan. Iran KSCE J Civ Eng 21:134–140

    Article  Google Scholar 

  • Shahrouzi SN, Perera DG (2019) Optimized hardware accelerators for data mining applications on embedded platforms: case study principal component analysis. Microprocess Microsyst 65:79–96

    Article  Google Scholar 

  • Siahlooei E, Fazeli SAS (2018) An application of interval arithmetic for solving fully fuzzy linear systems with trapezoidal fuzzy numbers. Adv Fuzzy Syst 2018:1–10

    Article  MATH  Google Scholar 

  • Stanimirović S, Micić I (2022) On the solvability of weakly linear systems of fuzzy relation equations. Inf Sci. https://doi.org/10.1016/j.ins.2022.05.111

    Article  Google Scholar 

  • Theodorou Y, Drossos C, Alevizos P (2007) Correspondence analysis with fuzzy data: the fuzzy eigenvalue problem. Fuzzy Sets Syst 158:704–721

    Article  MathSciNet  MATH  Google Scholar 

  • Tian Z (2010) Fuzzy eigenvectors of real matrix. J Math Res 2(3):103

    Article  MATH  Google Scholar 

  • Vroman A, Deschrijver G, Kerre EE (2007) Solving systems of linear fuzzy equations by parametric functions- an improved algorithm. Fuzzy Sets Syst 14:1515–1534

    Article  MathSciNet  MATH  Google Scholar 

  • Wang K, Zhend B (2006) Inconsistent fuzzy linear systems. Appl Math Comput 181:973–981

    MathSciNet  MATH  Google Scholar 

  • Wu C, Ming M (1991) On embedding problem of fuzzy number space: part 1. Fuzzy Sets Syst 44:33–38

    Article  MATH  Google Scholar 

  • Wu J-L et al (2019) Representation of stress tensor perturbations with application in machine-learning-assisted turbulence modeling. Comput Methods Appl Mech Eng 346:707–726

    Article  MathSciNet  MATH  Google Scholar 

  • Xie H (2021) A receptance method for robust and minimum norm partial quadratic eigenvalue assignment. Mech Syst Signal Process 160:107838

    Article  Google Scholar 

  • Yuan R (2021) Evaluation of the effect of pension model based on data mining. Annal Oper Res. https://doi.org/10.1007/s10479-021-04333-4

    Article  Google Scholar 

  • Zhang P (2019) A novel feature selection method based on global sensitivity analysis with application in machine learning-based prediction model. Appl Soft Comput 85:105859

    Article  Google Scholar 

  • Zheng B, Wang K (2006) General fuzzy systems. Appl Math Comput 181:1276–1286

    MathSciNet  MATH  Google Scholar 

  • Zhuo Q, Guo X (2022) An approach to calculate inverse of LR-trapezoidal fuzzy matrix. J Phys Conf Ser 2185:1

    Article  Google Scholar 

  • Zimmermann HJ (1985) Fuzzy sets theory and applications. Kluwer, Dordrecht

    Book  Google Scholar 

  • Ziqan A et al (2022) Fully fuzzy linear systems with trapezoidal and hexagonal fuzzy numbers. Granul Comput 7:229–238

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Asghar Hosseinzadeh.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khosravi, S., Hosseinzadeh, A.A., Kanafi, A.G. et al. New methods for computing fuzzy eigenvalues and fuzzy eigenvectors of fuzzy matrices using nonlinear programming approach. Soft Comput 27, 4425–4449 (2023). https://doi.org/10.1007/s00500-022-07764-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-022-07764-8

Keywords

Navigation