Skip to main content

Design optimization and parameter estimation of a PEMFC using nature-inspired algorithms

Abstract

Numerical simulation of proton-exchange membrane fuel cells (PEMFCs) requires an adequate model and precise parameters for reproducing their operational performance quantified by the polarization curve. Bioinspired algorithms are well-suited for optimization. The simulator is stressed by inputting thousands of randomly generated parameters, and hence, a robust numerical model is required. Once the proper model and parameters reproduce the experimental data, they can be used for design improvement. This article proposes a reformulation of a macrohomogeneous mathematical model to provide higher numerical stability to the solutions. We introduce optimization problems for parameter estimation and design optimization by applying three bioinspired algorithms to maximize its performance and minimize the platinum mass loading \(m_\mathrm{{Pt}}\). The results are validated by comparing the experimental polarization curves with those simulated from the estimated parameters. We compare a base design’s performance with the optimized design for maximum performance. We also compare a base design with the optimized design for minimum \(m_\mathrm{{Pt}}\). The results show that the particle swarm optimization requires the lowest computational cost and performs the best in most cases, fitting the experimental data with errors lesser than \(10^{-17}\). The minimization of \(m_\mathrm{{Pt}}\) reduces the amount by 42% compared to the base case.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Data availibility

Enquiries about data availability should be directed to the authors.

References

  • Amadane Y, Mounir H, marjani AE, Karim EM (2018) Numerical investigation of temperature and current density distribution on (pem) fuel cell performance. In: 2018 6th international renewable and sustainable energy conference (IRSEC), pp 1–6

  • Askarzadeh A, Rezazadeh A (2011a) Optimization of PEMFC model parameters with a modified particle swarm optimization. Int J Energy Res 35:1258–1265

    Article  Google Scholar 

  • Askarzadeh A, Rezazadeh A (2011b) Artificial immune system-based parameter extraction of proton exchange membrane fuel cell. Int J Electr Power Energy Syst 33(4):933–938. https://doi.org/10.1016/j.ijepes.2010.12.036

    Article  Google Scholar 

  • Askarzadeh A, Rezazadeh A (2011c) A grouping-based global harmony search algorithm for modeling of proton exchange membrane fuel cell. Int J Hydrogen Energy 36(8):5047–5053. https://doi.org/10.1016/j.ijhydene.2011.01.070

    Article  Google Scholar 

  • Askarzadeh A, dos Santos Coelho L (2014) A backtracking search algorithm combined with burger’s chaotic map for parameter estimation of PEMFC electrochemical model. Int J Hydrogen Energy 39(21):11165–11174. https://doi.org/10.1016/j.ijhydene.2014.05.052

    Article  Google Scholar 

  • Bandyopadhyay S, Kargupta H, Wang G (1998) Revisiting the GEMGA: scalable evolutionary optimization through linkage learning. In: Proceedings of the 1998 IEEE international conference on evolutionary computation. IEEE Press, pp 603–608

  • Ben Messaoud R, Midouni A, Hajji S (2021) Pem fuel cell model parameters extraction based on moth-flame optimization. Chem Eng Sci 229:116100. https://doi.org/10.1016/j.ces.2020.116100

    Article  Google Scholar 

  • Berning T, Djilali N (2003a) A 3D, multiphase, multicomponent model of the cathode and anode of a PEM fuel cell. J Electrochem Soc 150(12):1589. https://doi.org/10.1149/1.1621412

    Article  Google Scholar 

  • Berning T, Djilali N (2003b) Three-dimensional computational analysis of transport phenomena in a PEM fuel cell a parametric study. J Power Sources 124(2):440–452. https://doi.org/10.1016/S0378-7753(03)00816-4

    Article  Google Scholar 

  • Blanco-Cocom L, Botello-Rionda S, Ordoñez LC, Valdez SI (2021a) Robust parameter estimation of a PEMFC via optimization based on probabilistic model building. Math Comput Simul 185:218–237. https://doi.org/10.1016/j.matcom.2020.12.021

    Article  MathSciNet  MATH  Google Scholar 

  • Blanco-Cocom L, Botello-Rionda S, Ordoñez LC, Valdez SI (2021b) Robust parameter estimation of a PEMFC via optimization based on probabilistic model building. Math Comput Simul 185:218–237. https://doi.org/10.1016/j.matcom.2020.12.021

    Article  MathSciNet  MATH  Google Scholar 

  • Blanco-Cocom L, Botello-Rionda S, Ordoñez LC, Valdez SI (2022) A reaction–convection–diffusion model for PEM fuel cells. Finite Elem Anal Des 201:103703. https://doi.org/10.1016/j.finel.2021.103703

    Article  MathSciNet  Google Scholar 

  • Bosman PAN, Thierens D (1999) Linkage information processing in distribution estimation algorithms. In: Proceedings of the genetic and evolutionary computation conference GECCO-99 1, pp 60–67

  • Chan C, Zamel N, Li X, Shen J (2012) Experimental measurement of effective diffusion coefficient of gas diffusion layer/microporous layer in PEM fuel cells. Electrochim Acta 65:13–21. https://doi.org/10.1016/j.electacta.2011.12.110

    Article  Google Scholar 

  • Chen Y, Wang N (2019) Cuckoo search algorithm with explosion operator for modeling proton exchange membrane fuel cells. Int J Hydrogen Energy 44(5):3075–3087. https://doi.org/10.1016/j.ijhydene.2018.11.140

    Article  Google Scholar 

  • Dai C, Chen W, Cheng Z, Li Q, Jiang Z, Jia J (2011) Seeker optimization algorithm for global optimization: a case study on optimal modelling of proton exchange membrane fuel cell (PEMFC). Int J Electr Power Energy Syst 33(3):369–376. https://doi.org/10.1016/j.ijepes.2010.08.032

    Article  Google Scholar 

  • El-Fergany A (2017) Electrical characterisation of proton exchange membrane fuel cells stack using grasshopper optimiser. IET Renew Power Gener 12:9–17. https://doi.org/10.1049/iet-rpg.2017.0232

    Article  Google Scholar 

  • El-Fergany AA (2018) Extracting optimal parameters of PEM fuel cells using Salp swarm optimizer. Renew Energy 119:641–648. https://doi.org/10.1016/j.renene.2017.12.051

    Article  Google Scholar 

  • Goldberg DE, Korb B, Deb K (1989) Messy genetic algorithms: motivation, analysis and first results. Complex Syst 3(5):493–530

    MathSciNet  MATH  Google Scholar 

  • Goldberg DE, Deb K, Kargupta H, Harik G (1993) Rapid, accurate optimization of difficult problems using fast messy genetic algorithms. In: Forrest S (ed) Proceedings of the fifth international conference on genetic algorithms. Morgan Kauffman vol 1, pp 56–64

  • Han W, Li D, Yu D, Ebrahimian H (2019) Optimal parameters of PEM fuel cells using chaotic binary shark smell optimizer. Energy Sources Part A Recov Utili Environ Effects. https://doi.org/10.1080/15567036.2019.1676845

    Article  Google Scholar 

  • Heidary H, Jafar Kermani M, Khajeh-Hosseini-Dalasm N (2016) Performance analysis of PEM fuel cells cathode catalyst layer at various operating conditions. Int J Hydrogen Energy 41(47):22274–22284. https://doi.org/10.1016/j.ijhydene.2016.08.178

    Article  Google Scholar 

  • Kadalbajoo MK, Patidar KC (2002) A survey of numerical techniques for solving singularly perturbed ordinary differential equations. Appl Math Comput 130(2):457–510. https://doi.org/10.1016/S0096-3003(01)00112-6

    Article  MathSciNet  MATH  Google Scholar 

  • Kandidayeni M, Macias A, Khalatbarisoltani A, Boulon L, Kelouwani S (2019) Benchmark of proton exchange membrane fuel cell parameters extraction with metaheuristic optimization algorithms. Energy 183:912–925. https://doi.org/10.1016/j.energy.2019.06.152

    Article  Google Scholar 

  • Kargupta H (1996) The gene expression messy genetic algorithm. In: Proceedings of the 1996 IEEE international conference on evolutionary computation, pp 631–636

  • Kargupta H, Goldberg DE (1997) Search, blackbox optimization, and sample complexity. In: Belew RW, Vose M (eds) Foundations of genetic algorithms 4. Morgan Kaufmann, Burlington

    Google Scholar 

  • Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks Perth Australia, pp 1942–1945

  • Khajeh-Hosseini-Dalasm N, Kermani MJM, Moghaddam DG, Stockie JM (2010) A parametric study of the cathode catalyst layer structural parameters on the performance of a PEM fuel cell. Int J Hydrogen Energy 35:2417–2427

    Article  Google Scholar 

  • Kierzenka JA, Shampine LF (2008) A BVP solver that controls residual and error. J Numer Anal Ind Appl Math 3(1–2):27–41

    MathSciNet  MATH  Google Scholar 

  • Kopteva N, O’Riordan E (2010) Shishkin meshes in the numerical solution of singularly perturbed differential equations. Int J Numer Anal Model 7(3):393–415

    MathSciNet  MATH  Google Scholar 

  • Labs S (2020) Genetic algorithm. MATLAB Central File Exchange

  • Larrañaga P, Lozano JA (2002) Estimation of distribution algorithms: a new tool for evolutionary computation. Kluwer Academic Publishers, Dordrecht

    Book  MATH  Google Scholar 

  • Larrañaga P, Etxeberria R, Lozano JA, Pena JM (2000a) Combinatorial optimization by learning and simulation of Bayesian networks. In: Boutilier C, Goldszmidt M (eds) Uncertainty in artificial intelligence, UAI-2000 1, pp 343–352

  • Larrañaga P, Etxeberria R, Lozano JA, Pena JM (2000b) Optimization in continuous domains by learning and simulation of gaussian networks. In: Wu AS (ed) Proceedings of the genetic and evolutionary computation conference, GECCO-2000, Workshop Program 1, pp 201–204

  • Lobo FG, Deb K, Goldberg DE, Harik GR, Wang L (1998) Compressed introns in a linkage learning genetic algorithm. In: Genetic programming 1998: Proceedings of the third annual conference. Morgan Kaufmann, Burlington, pp 551–558

  • Lu DM, Djilali N, Berning T (2002) Three-dimensional computational analysis of transport phenomena in a PEM fuel cell. J Power Sources 106(1–2):284–294

    Google Scholar 

  • Mansouri M, Roozrokh K, Jahantigh F (2020) Modelling and optimization of polymer electrolyte membrane (PEM) fuel cell by response surface methodology-precise evaluation of significant variables. Multiscale Multidiscip Model Exp Des 3:1–9. https://doi.org/10.1007/s41939-019-00056-z

    Article  Google Scholar 

  • Marr C, Li X (1999) Composition and performance modelling of catalyst layer in a proton exchange membrane fuel cell. J Power Sources 77(1):17–27. https://doi.org/10.1016/S0378-7753(98)00161-X

    Article  Google Scholar 

  • Menesy A, Sultan H, Korashy A, Kamel S, Jurado F (2021) A modified farmland fertility optimizer for parameters estimation of fuel cell models. Neural Comput Appl 33:12169–12190. https://doi.org/10.1007/s00521-021-05821-1

    Article  Google Scholar 

  • Meng X, Pian Z (2016) Intelligent coordinated control of complex uncertain systems for power distribution network reliability: chapter 2-theoretical basis for intelligent coordinated control. Elsevier, Amsterdam, pp 15–50. https://doi.org/10.1016/B978-0-12-849896-5.00002-7

    Book  Google Scholar 

  • Mezura-Montes E, Coello CAC (2011) Constraint-handling in nature-inspired numerical optimization: past, present and future. Swarm Evolut Comput, pp 173–194

  • Mirjalili S (2020) A simple implementation of particle swarm optimization (pso) algorithm. MATLAB Central File Exchange

  • Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191. https://doi.org/10.1016/j.advengsoft.2017.07.002

    Article  Google Scholar 

  • Moo ZJ, Zhu XJ, Wei LY, Cao GY (2006) Parameter optimization for a PEMFC model with a hybrid genetic algorithm. Int J Energy Res 20:585–597

    Article  Google Scholar 

  • Mühlenbein H, Paaß G (1996) From recombination of genes to the estimation of distributions I: binary parameters. In: Lecture notes in computer science 1411: parallel problem solving from nature-PPSN IV, pp 178–187

  • Ohenoja M, Leiviskä K (2010) Validation of genetic algorithm results in a fuel cell model. Int J Hydrogen Energy 35(22):12618–12625. https://doi.org/10.1016/j.ijhydene.2010.07.129. Bio-ethanol and other renewable sources and reforming process for sustainable hydrogen production

  • Outeiro M, Chibante R, Carvalho A, de-Almeida A (2008) A parameter optimized model of a proton exchange membrane fuel cell including temperature effects. J Power Sources 185(2):952–960

    Article  Google Scholar 

  • Outeiro MT, Chibante R, Carvalho AS, de-Almeida AT (2009) A new parameter extraction method for accurate modeling of PEM fuel cells. Int J Energy Res 33:978–988

    Article  Google Scholar 

  • Pavliotis G, Stuart A (2008) Multiscale methods: averaging and homogenization. Springer, Berlin. https://doi.org/10.1007/978-0-387-73829-1

    Book  MATH  Google Scholar 

  • Pedersen ME (2010) Good parameters for particle swarm optimization. Hvass Laboratories, Luxembourg

    Google Scholar 

  • Priya K, Babu TS, Balasubramanian K, Kumar KS, Rajasekar N (2015) A novel approach for fuel cell parameter estimation using simple genetic algorithm. Sustain Energy Technol Assess 12:46–52

    Google Scholar 

  • Priya K, Sathishkumar K, Rajasekar N (2018) A comprehensive review on parameter estimation techniques for proton exchange membrane fuel cell modelling. Renew Sustain Energy Rev 93:121–144. https://doi.org/10.1016/j.rser.2018.05.017

    Article  Google Scholar 

  • Qi Z, Kaufman A (2003) Low Pt loading high performance cathodes for PEM fuel cells. J Power Sources 113(1):37–43. https://doi.org/10.1016/S0378-7753(02)00477-9

    Article  Google Scholar 

  • Qin F, Liu P, Niu H, Song H, Yousefi N (2020) Parameter estimation of PEMFC based on improved fluid search optimization algorithm. Energy Rep 6:1224–1232. https://doi.org/10.1016/j.egyr.2020.05.006

    Article  Google Scholar 

  • Salva JA, Iranzo A, Rosa F, Tapia E, Lopez E, Isorna F (2015) Optimization of a PEM fuel cell operating conditions: obtaining the maximum performance polarization curve. Int J Hydrogen Energy 41(43):19713–19723 (2016) The 5th Iberian Symposium on Hydrogen, Fuel Cells and Advanced Batteries (HYCELTEC 2015), 5–8 July 2015. Tenerife, Spain. https://doi.org/10.1016/j.ijhydene.2016.03.136

  • Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation algorithm: theory and application. Adv Eng Softw 105:30–47. https://doi.org/10.1016/j.advengsoft.2017.01.004

    Article  Google Scholar 

  • Secanell M, Karan K, Suleman A, Djilali N (2007) Multi-variable optimization of PEMFC cathodes using an agglomerate model. Electrochim Acta 52:6318–6337

    Article  Google Scholar 

  • Secanell M, Jarauta A, Kosakian A, Sabharwal M, Zhou J (2017) PEM fuel cells, modeling. Springer, New York, pp 1–61. https://doi.org/10.1007/978-1-4939-2493-6_1019-1

    Book  Google Scholar 

  • Shah AA, Kim G-S, Sui PC, Harvey D (2007) Transient non-isothermal model of a polymer electrolyte fuel cell. J Power Sources 163(2): 793–806. https://doi.org/10.1016/j.jpowsour.2006.09.022.Selected Papers presented at the fuel processing for hydrogen production symposium at the 230th American Chemical Society National Meeting Washington, DC, USA, 28 August–1 September 2005

  • Shen J, Zhou J, Astrath NGC, Navessin T, Liu Z-SS, Lei C, Rohling JH, Bessarabov D, Knights S, Ye S (2011) Measurement of effective gas diffusion coefficients of catalyst layers of PEM fuel cells with a Loschmidt diffusion cell. J Power Sources 196(2):674–678. https://doi.org/10.1016/j.jpowsour.2010.07.086

    Article  Google Scholar 

  • Song D, Wang Q, Liu Z, Navessin T, Eikerling M, Holdcroft S (2004) Numerical optimization study of the catalyst layer of PEM fuel cell cathode. J Power Sources 126(1):104–111. https://doi.org/10.1016/j.jpowsour.2003.08.043

    Article  Google Scholar 

  • Sun S, Su Y, Yin C, Jermsittiparsert K (2020) Optimal parameters estimation of PEMFCs model using converged moth search algorithm. Energy Rep 6:1501–1509. https://doi.org/10.1016/j.egyr.2020.06.002

    Article  Google Scholar 

  • Ticianelli EA (1988) Methods to advance technology of proton exchange membrane fuel cells. J Electrochem Soc 135(9):2209. https://doi.org/10.1149/1.2096240

    Article  Google Scholar 

  • Tiedemann W, Newman J (1975) Maximum effective capacity in an ohmically limited porous electrode. J Electrochem Soc 122(11):1482–1485. https://doi.org/10.1149/1.2134046

    Article  Google Scholar 

  • Turgut OE, Coban MT (2016) Optimal proton exchange membrane fuel cell modelling based on hybrid teaching learning based optimization - differential evolution algorithm. Ain Shams Eng J 7(1):347–360

    Article  Google Scholar 

  • Valdez SI, Hernández A, Botello S (2010) Efficient estimation of distribution algorithms by using the empirical selection distribution. New achievements in evolutionary computation, Peter Korosec (Ed.), ISBN: 978-953-307-053-7, InTech

  • van-Kemenade CHM (1998) Building block filtering and mixing. In: Proceedings of the 1998 international conference on evolutionary computation. IEEE Press, Piscataway

  • Wang G, Mukherjee PP, Wang C-Y (2007) Optimization of polymer electrolyte fuel cell cathode catalyst layers via direct numerical simulation modeling. Electrochim Acta 52(22):6367–6377. https://doi.org/10.1016/j.electacta.2007.04.073

    Article  Google Scholar 

  • Wang J, Wang H, Fan Y (2018) Techno-economic challenges of fuel cell commercialization. Engineering 4(3):352–360. https://doi.org/10.1016/j.eng.2018.05.007

    Article  Google Scholar 

  • Wong W, Ming, CI (2019) A review on metaheuristic algorithms: recent trends, benchmarking and applications. In: 2019 7th international conference on smart computing communications (ICSCC), pp 1–5

  • Xu S, Wang Y, Wang Z (2019) Parameter estimation of proton exchange membrane fuel cells using eagle strategy based on JAYA algorithm and Nelder–Mead simplex method. Energy 173:457–467. https://doi.org/10.1016/j.energy.2019.02.106

    Article  Google Scholar 

  • Yakout AH, Kotb H, AboRas KM, Hasanien HM (2022) Comparison among different recent metaheuristic algorithms for parameters estimation of solid oxide fuel cell: steady-state and dynamic models. Alex Eng J 61(11):8507–8523. https://doi.org/10.1016/j.aej.2022.02.009

    Article  Google Scholar 

  • Yang B, Wang J, Yu L, Shu H, Yu T, Zhang X, Yao W, Sun L (2020) A critical survey on proton exchange membrane fuel cell parameter estimation using meta-heuristic algorithms. J Clean Prod 265:121660. https://doi.org/10.1016/j.jclepro.2020.121660

    Article  Google Scholar 

  • Ye M, Wang X, Xu Y (2009) Parameter identification for proton exchange membrane fuel cell model using particle swarm optimization. Int J Hydrogen Energy 34(2):981–989. https://doi.org/10.1016/j.ijhydene.2008.11.026

  • You L, Liu H (2001) A parametric study of the cathode catalyst layer of PEM fuel cells using a pseudo-homogeneous model. Int J Hydrogen Energy 26(9):991–999. https://doi.org/10.1016/S0360-3199(01)00035-0

    Article  Google Scholar 

  • Yuan Z, Wang W, Wang H, Yildizbasi A (2020) Developed coyote optimization algorithm and its application to optimal parameters estimation of PEMFC model. Energy Rep 6:1106–1117. https://doi.org/10.1016/j.egyr.2020.04.032

    Article  Google Scholar 

  • Zhang J, Sanderson AC (2009) Jade: adaptive differential evolution with optional external archive. IEEE Trans Evol Comput 13(45):945–958. https://doi.org/10.1109/TEVC.2009.2014613

    Article  Google Scholar 

  • Zhang L, Wang N (2013) An adaptive RNA genetic algorithm for modeling of proton exchange membrane fuel cells. Int J Hydrogen Energy 38(1):219–228

    Article  Google Scholar 

  • Zhang G, Xiao C, Razmjooy N (2020) Optimal parameter extraction of PEM fuel cells by meta-heuristics. Int J Ambient Energy. https://doi.org/10.1080/01430750.2020.1745276

    Article  Google Scholar 

  • Zhu X, Wang N (2019) Cuckoo search algorithm with onlooker bee search for modeling PEMFCs using T2FNN. Eng Appl Artif Intell 85:740–753. https://doi.org/10.1016/j.engappai.2019.07.019

    Article  Google Scholar 

Download references

Acknowledgements

This article was supported by CONACYT, Mexico, under Grant 100236. S. Ivvan Valdez is supported by Cátedra-CONACYT Grant 7795.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ivvan Valdez.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. Full data from executions is available at request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Parameter values for simulations

Appendix A: Parameter values for simulations

See Tables 7 and 8.

Table 7 Parameter values used in the baseline calculation used in (Song et al. 2004) for dataset 1
Table 8 Parameter values used in the baseline calculation used in (Khajeh-Hosseini-Dalasm et al. 2010) for dataset 2
Table 9 Parameter values used in this work to adjust dataset 3 obtained from Salva et al. (2015)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Blanco-Cocom, L., Botello-Rionda, S., Ordoñez, L.C. et al. Design optimization and parameter estimation of a PEMFC using nature-inspired algorithms. Soft Comput 27, 3765–3784 (2023). https://doi.org/10.1007/s00500-022-07520-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-022-07520-y

Keywords

  • PEM fuel cell
  • Macrohomogeneous mathematical model
  • Bioinspired optimization algorithms
  • Performance maximization
  • Minimization of platinum mass loading