Skip to main content

Possibility degree-based interval-valued q-rung orthopair fuzzy graphs

Abstract

The concept of interval-valued q-rung orthopair fuzzy graph (IVq-ROFG) is a major recent extension in the field of fuzzy graph. However, traditional IVq-ROFG imposes strict restrictions on the lower and upper bounds of membership degree and non-membership degree, which narrows its scope of applicability. This paper proposes a new graph called possibility degree-based interval-valued q-rung orthopair fuzzy graph (PDIVq-ROFG) and generalizes the traditional IVq-ROFG. Firstly, the concept of PDIVq-ROFG is given and some basic terms, such as complement, self-complement, bridge, degree and total degree, are discussed. Secondly, product operations on PDIVq-ROFG are presented, including tensor product, Cartesian product, semi-strong product and strong product. Moreover, some theorems about the degree and total degree under these product operations are given and elaborated with several examples. Finally, the application of PDIVq-ROFG to the network of oil pipelines is provided and the feasibility and effectiveness of the PDIVq-ROFG are verified.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Data Availability

Data used to support the findings of this work are available from the corresponding author upon request.

References

  1. Akram M, Dudek WA (2011) Interval-valued fuzzy graphs. Comput Math Appl 61(2):289–299

    MathSciNet  Article  Google Scholar 

  2. Akram M, Alsulami S, Karaaslan F et al (2021) \(q\)-rung orthopair fuzzy graphs under hamacher operators. J Intell Fuzzy Syst 40(1):1367–1390

    Article  Google Scholar 

  3. Blue M, Bush B, Puckett J (2002) Unified approach to fuzzy graph problems. Fuzzy Sets Syst 125(3):355–368

    MathSciNet  Article  Google Scholar 

  4. Broumi S, Talea M, Bakali A et al (2016) Single valued neutrosophic graphs. J New theory 10:86–101

    Google Scholar 

  5. Gani AN, Ahamed MB (2003) Order and size in fuzzy graphs. Bull Pure Appl Sci 22(1):145–148

    MathSciNet  MATH  Google Scholar 

  6. Gani AN, Radha K (2009) The degree of a vertex in some fuzzy graphs. Int J Algorithms Comput Math 2:107–116

    Google Scholar 

  7. Garg H (2021) A new possibility degree measure for interval-valued \(q\)-rung orthopair fuzzy sets in decision-making. Int J Intell Syst 36(1):526–557

    Article  Google Scholar 

  8. Garrec T, Scarsini M (2020) Search for an immobile hider on a stochastic network. Eur J Oper Res 283(2):783–794

    MathSciNet  Article  Google Scholar 

  9. Habib A, Akram M, Farooq A (2019) \(q\)-Rung orthopair fuzzy competition graphs with application in the soil ecosystem. Mathematics 7(1):91–123

    MathSciNet  Article  Google Scholar 

  10. Hu A, Wang Y, Cao J et al (2020) Event-triggered bipartite consensus of multi-agent systems with switching partial couplings and topologies. Inf Sci 521:1–13

    MathSciNet  Article  Google Scholar 

  11. Huang S, Xu Z, Tsang IW et al (2020) Auto-weighted multi-view co-clustering with bipartite graphs. Inf Sci 512:18–30

    MathSciNet  Article  Google Scholar 

  12. Jan N, Mahmood T, Zedam L et al (2019) Analysis of social networks, communication networks and shortest path problems in the environment of interval-valued \(q\)-rung orthopair fuzzy graphs. Int J Fuzzy Syst 21(6):1687–1708

    MathSciNet  Article  Google Scholar 

  13. Joshi BP, Singh A, Bhatt PK et al (2018) Interval valued \(q\)-rung orthopair fuzzy sets and their properties. J Intell Fuzzy Syst 35(5):5225–5230

    Article  Google Scholar 

  14. Kaufmann A (1973) Introduction a la Theorie des Sous-emsembles Flous 1. Masson et cie, Paris

    MATH  Google Scholar 

  15. Koczy LT, Jan N, Mahmood T et al (2020) Analysis of social networks and wi-fi networks by using the concept of picture fuzzy graphs. Soft Comput 24(21):16,551-16,563

    Article  Google Scholar 

  16. Lakhwani TS, Mohanta K, Dey A et al (2021) Some operations on dombi neutrosophic graph. J Ambient Intell Humanized Comput. https://doi.org/10.1007/s12652-021-02909-3

    Article  Google Scholar 

  17. Luqman A, Akram M, Al-Kenani NA (2019) \(q\)-rung orthopair fuzzy hypergraphs with applications. Mathematics 7(3):1–22

    Article  Google Scholar 

  18. Mishra S, Pal A (2013) Product of interval valued intuitionistic fuzzy graph. Ann Pure Appl Math 5(1):37–46

    Google Scholar 

  19. Mohamed SY, Ali AM (2018) Interval-valued Pythagorean fuzzy graph. J Comput Math Sci 9(10):1497–1511

    Google Scholar 

  20. Mohamed SY, Ali AM (2019) Some products on interval-valued Pythagorean fuzzy graph. Malaya J Matematik 7(3):566–571

    MathSciNet  Article  Google Scholar 

  21. Mohanta K, Dey A, Pal A et al (2020) A study of m-polar neutrosophic graph with applications. J Intell Fuzzy Syst 38(4):4809–4828

    Article  Google Scholar 

  22. Mordeson JN, Chang-Shyh P (1994) Operations on fuzzy graphs. Inf Sci 79:159–170

    MathSciNet  Article  Google Scholar 

  23. Naz S, Rashmanlou H, Malik MA (2017) Operations on single valued neutrosophic graphs with application. J Intell Fuzzy Syst 32(3):2137–2151

    Article  Google Scholar 

  24. Naz S, Ashraf S, Akram M (2018) A novel approach to decision-making with Pythagorean fuzzy information. Mathematics 6(6):95–123

    Article  Google Scholar 

  25. Naz S, Akram M, Alsulami S et al (2020) Decision-making analysis under interval-valued \(q\)-rung orthopair dual hesitant fuzzy environment. Int J Comput Intell Syst 14(1):332–357

    Article  Google Scholar 

  26. Parvathi R, Karunambigai MG (2006) Intuitionistic fuzzy graphs Theory and Applications. Computational Intelligence. Springer, Berlin Heidelberg, pp 139–150

    Google Scholar 

  27. Pramanik T, Samanta S, Sarkar B et al (2017) Fuzzy \(\phi \)-tolerance competition graphs. Soft Comput 21(13):3723–3734

    Article  Google Scholar 

  28. Rashmanlou H, Pal M, Borzooei RA et al (2018) Product of interval-valued fuzzy graphs and degree. J Intell Fuzzy Syst 35(6):6443–6451

    Article  Google Scholar 

  29. Rosenfeld A (1975) Fuzzy graphs. Fuzzy sets and their applications to cognitive and decision processes. Academic Press, New York, pp 77–95

    Chapter  Google Scholar 

  30. Sahoo S, Pal M (2017) Product of intuitionistic fuzzy graphs and degree. J Intell Fuzzy Syst 32(1):1059–1067

    Article  Google Scholar 

  31. Xu J (2001) Topological structure and analysis of interconnection networks. Kluwer Academic Publishers, Boston

    Book  Google Scholar 

  32. Xu Z, Da Q (2003) Possibility degree method for ranking interval numbers and its application. J Syst Eng 18(1):67–70

    Google Scholar 

  33. Yin S, Li H, Yang Y (2019) Product operations on \(q\)-rung orthopair fuzzy graphs. Symmetry 11(4):588–611

    Article  Google Scholar 

  34. Zadeh L (1971) Similarity relations and fuzzy orderings. Inf Sci 3(2):177–200

    MathSciNet  Article  Google Scholar 

  35. Zadeh LA (1965) Fuzzy sets. Inf Cont 8(3):338–353

    Article  Google Scholar 

  36. Zadeh LA (1999) Fuzzy logic and the calculi of fuzzy rules, fuzzy graphs, and fuzzy probabilities. Comput Math Appl 37(11–12):35

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

This research has been supported by the National Natural Science Foundation of China (No. 11626079), the Natural Science Foundation of Hebei Province (No. A2020402013), the Social Science Foundation of Hebei Province (No. HB19GL061), the 2019 Social Science Research and Development Project of Hebei Province (No. 2019031201011), the Scientific Research Project of Department of Education of Hebei Province (No. BJ2017031) and the Research Foundation for Young key Scholars at Hebei University of Engineering (No. 16121002016).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yang Yang.

Ethics declarations

Conflict of interest

The author declares that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by the author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yin, S., Yang, Y., Yao, N. et al. Possibility degree-based interval-valued q-rung orthopair fuzzy graphs. Soft Comput 25, 15005–15020 (2021). https://doi.org/10.1007/s00500-021-06412-x

Download citation

Keywords

  • Interval-valued q-rung orthopair fuzzy graph
  • Possibility degree
  • Product operations
  • Total degree