Skip to main content

Parameter-free and cooperative local search algorithms for graph colouring

Abstract

Parameter-free algorithms are of an increasing interest in applications that require out-of-the-box solving techniques. For instance, scheduling in volatile environments or control parameters optimisation often requires flexible solving approaches without the need to tune or retune the parameters. In addition, parameter-free algorithms are usually beneficial in solving previously unexplored real-world problem instances. In this paper, we propose a parameter-free local search strategy to solve graph colouring, which is the underlying problem for a number of scheduling applications. Two variants of parameter-free local search are computationally investigated: PFLS-A and PFLS-B. Both of these algorithms are based on accepting strictly improving moves and operating as a random walk if no strictly improving move is found. PFLS-A and PFLS-B differ in randomised versus systematic exploration of the neighbourhood of the current solution. Their cooperative variant CPFLS is also proposed. We compare the results of these three algorithms to the results obtained by 13 other local search methods from the literature. CPFLS provides better or equal results as the other local search algorithms in \(67.25\%\) of per-instance comparisons. This is without employing any explicit or implicit parameters that are usually used in metaheuristics. This hints the promising nature of parameter-free metaheuristics not only for this problem but also metaheuristics in general.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability and material

The DIMACS datasets used in this research are publicly available and provided by a third party. The complex network instances can be found at https://davidchalupa.github.io/research/data/networks.html.

References

  1. Afshar M (2010) A parameter free continuous ant colony optimization algorithm for the optimal design of storm sewer networks: constrained and unconstrained approach. Adv Eng Softw 41(2):188–195

    MATH  Article  Google Scholar 

  2. Al-Adwan A, Mahafzah BA, Sharieh A (2018) Solving traveling salesman problem using parallel repetitive nearest neighbor algorithm on OTIS-hypercube and OTIS-mesh optoelectronic architectures. J Supercomput 74(1):1–36

    Article  Google Scholar 

  3. Al-Adwan A, Sharieh A, Mahafzah BA (2019) Parallel heuristic local search algorithm on OTIS hyper hexa-cell and OTIS mesh of trees optoelectronic architectures. Appl Intell 49(2):661–688

    Article  Google Scholar 

  4. Avanthay C, Hertz A, Zufferey N (2003) A variable neighborhood search for graph coloring. Eur J Oper Res 151(2):379–388

    MathSciNet  MATH  Article  Google Scholar 

  5. Bandyopadhyay A, Dhar AK, Basu S (2020) Graph coloring: a novel heuristic based on trailing path - properties, perspective and applications in structured networks. Soft Comput 24(1):603–625

    MATH  Article  Google Scholar 

  6. Blöchliger I, Zufferey N (2008) A graph coloring heuristic using partial solutions and a reactive tabu scheme. Comput Oper Res 35(3):960–975

    MathSciNet  MATH  Article  Google Scholar 

  7. Brélaz D (1979) New methods to color vertices of a graph. Commun ACM 22(4):251–256

    MathSciNet  MATH  Article  Google Scholar 

  8. Burke EK, McCollum B, Meisels A, Petrovic S, Qu R (2007) A graph-based hyper-heuristic for educational timetabling problems. Eur J Oper Res 176(1):177–192

    MathSciNet  MATH  Article  Google Scholar 

  9. Chakrabarti D (2004) Autopart: parameter-free graph partitioning and outlier detection. European conference on principles of data mining and knowledge discovery. Springer, Berlin, pp 112–124

    Google Scholar 

  10. Chalupa D (2011) Population-based and learning-based metaheuristic algorithms for the graph coloring problem. In: Lanzi PL, Krasnogor N (eds) Proceedings of the 13th annual conference on Genetic and evolutionary computation, ACM, New York, NY, GECCO ’11, Dublin, Ireland, pp 465–472

  11. Chalupa D (2018) On transitions in the behaviour of tabu search algorithm TabuCol for graph colouring. J Exp Theor Artif Intell 30(1):53–69

    Article  Google Scholar 

  12. Chalupa D, Balaghan P, Hawick KA, Gordon NA (2017) Computational methods for finding long simple cycles in complex networks. Knowl-Based Syst 125:96–107

    Article  Google Scholar 

  13. Chalupa D, Hawick KA, Walker JA (2018) Hybrid bridge-based memetic algorithms for finding bottlenecks in complex networks. Big Data Res 14:68–80

    Article  Google Scholar 

  14. Chen L, Peng J, Ralescu DA (2019) Uncertain vertex coloring problem. Soft Comput 23(4):1337–1346

    MATH  Article  Google Scholar 

  15. Cheng C, Li S, Lin Y (2019) Self-adaptive parameters in differential evolution based on fitness performance with a perturbation strategy. Soft Comput 23(9):3113–3128

    Article  Google Scholar 

  16. Chiarandini M, Stützle T, et al (2002) An application of iterated local search to graph coloring problem. In: Proceedings of the computational symposium on graph coloring and its generalizations, pp 112–125

  17. Chiarandini M, Dumitrescu I, Stützle T (2018) Stochastic local search algorithms for the graph colouring problem. Handbook of approximation algorithms and metaheuristics. Chapman & Hall, CRC, Boca Raton, FL, USA

    Google Scholar 

  18. Do NAD, Nielsen IE, Chen G, Nielsen P (2016) A simulation-based genetic algorithm approach for reducing emissions from import container pick-up operation at container terminal. Ann Oper Res 242(2):285–301

    MathSciNet  MATH  Article  Google Scholar 

  19. Eskandari-Khanghahi M, Tavakkoli-Moghaddam R, Taleizadeh AA, Amin SH (2018) Designing and optimizing a sustainable supply chain network for a blood platelet bank under uncertainty. Eng Appl Artif Intell 71:236–250

    Article  Google Scholar 

  20. Galinier P, Hao JK (1999) Hybrid evolutionary algorithms for graph coloring. J Comb Optim 3(4):379–397

    MathSciNet  MATH  Article  Google Scholar 

  21. Galinier P, Hertz A (2006) A survey of local search methods for graph coloring. Comput Oper Res 33(9):2547–2562

    MathSciNet  MATH  Article  Google Scholar 

  22. Galinier P, Hamiez JP, Hao JK, Porumbel D (2013) Recent advances in graph vertex coloring. Handbook of optimization. Springer, Berlin, pp 505–528

  23. Giaro K, Kubale M, Obszarski P (2009) A graph coloring approach to scheduling of multiprocessor tasks on dedicated machines with availability constraints. Discr Appl Math 157(17):3625–3630

    MathSciNet  MATH  Article  Google Scholar 

  24. Girvan M, Newman MEJ (2002) Community structure in social and biological networks. Proc Natl Acad Sci 99(12):7821–7826

    MathSciNet  MATH  Article  Google Scholar 

  25. Hao JK, Wu Q (2012) Improving the extraction and expansion method for large graph coloring. Discr Appl Math 160(16–17):2397–2407

    MathSciNet  MATH  Article  Google Scholar 

  26. Hao JK, Dorne R, Galinier P (1998) Tabu search for frequency assignment in mobile radio networks. J Heuristics 4(1):47–62

    MATH  Article  Google Scholar 

  27. Held S, Cook W, Sewell EC (2012) Maximum-weight stable sets and safe lower bounds for graph coloring. Math Program Comput 4(4):363–381

    MathSciNet  MATH  Article  Google Scholar 

  28. Hertz A, de Werra D (1987) Using tabu search techniques for graph coloring. Computing 39(4):345–351

    MathSciNet  MATH  Article  Google Scholar 

  29. Hertz A, Plumettaz M, Zufferey N (2008) Variable space search for graph coloring. Discr Appl Math 156(13):2551–2560

    MathSciNet  MATH  Article  Google Scholar 

  30. Johnson DS, Trick M (1996) Cliques, coloring, and satisfiability: second DIMACS implementation challenge. American Mathematical Society, Providence, RI

    MATH  Book  Google Scholar 

  31. Johnson DS, Aragon CR, McGeoch LA, Schevon C (1991) Optimization by simulated annealing: an experimental evaluation; part II, graph coloring and number partitioning. Oper Res 39(3):378–406

    MATH  Article  Google Scholar 

  32. Karp RM (1972) Reducibility among combinatorial problems. In: Miller R, Thatcher J (eds) Proceedings of a symposium on the complexity of computer computations. Plenum Press, New York, pp 85–103

    Chapter  Google Scholar 

  33. Keogh E, Lonardi S, Ratanamahatana CA (2004) Towards parameter-free data mining. In: Proceedings of the tenth ACM SIGKDD International conference on Knowledge discovery and data mining, ACM, pp 206–215

  34. Khandekar N, Joshi V (2020) Zero-divisor graphs and total coloring conjecture. Soft Comput 24(24):18273–18285

    Article  Google Scholar 

  35. Knuth DE (1993) The Stanford GraphBase: a platform for combinatorial computing. Addison-Wesley, Reading, MA

    MATH  Google Scholar 

  36. Leitão P, Restivo F (2006) Adacor: a holonic architecture for agile and adaptive manufacturing control. Comput Ind 57(2):121–130

    Article  Google Scholar 

  37. Lewis R, Thompson J, Mumford C, Gillard J (2012) A wide-ranging computational comparison of high-performance graph colouring algorithms. Comput Oper Res 39(9):1933–1950

    MathSciNet  MATH  Article  Google Scholar 

  38. Li Z, Janardhanan MN, Tang Q, Nielsen P (2016) Co-evolutionary particle swarm optimization algorithm for two-sided robotic assembly line balancing problem. Adv Mech Eng 8(9):1687814016667907

    Google Scholar 

  39. Lopez TT, Schaeffer E, Domiguez-Diaz D, Dominguez-Carrillo G (2017) Structural effects in algorithm performance: A framework and a case study on graph coloring. In: Computing conference, 2017, IEEE, pp 101–112

  40. Lü Z, Hao JK (2010) A memetic algorithm for graph coloring. Eur J Oper Res 203(1):241–250

    MathSciNet  MATH  Article  Google Scholar 

  41. Lusseau D, Schneider K, Boisse OJ, Haase P, Slooten E, Dawson SM (2003) The bottlenose dolphin community of doubtful sound features a large proportion of long-lasting associations. Behav Ecol Sociobiol 54(4):396–405

    Article  Google Scholar 

  42. Mahafzah BA (2011) Parallel multithreaded IDA* heuristic search: algorithm design and performance evaluation. Int J Parall, Emerg Distrib Syst 26(1):61–82

    MathSciNet  MATH  Article  Google Scholar 

  43. Mahafzah BA (2014) Performance evaluation of parallel multithreaded A* heuristic search algorithm. J Inf Sci 40(3):363–375

    Article  Google Scholar 

  44. Mahafzah BA, Jabri R, Murad O (2021) Multithreaded scheduling for program segments based on chemical reaction optimizer. Soft Comput 25(4):2741–2766

    Article  Google Scholar 

  45. Mendes ND, Casimiro AC, Santos PM, Sá-Correia I, Oliveira AL, Freitas AT (2006) Musa: a parameter free algorithm for the identification of biologically significant motifs. Bioinformatics 22(24):2996–3002

    Article  Google Scholar 

  46. Moalic L, Gondran A (2015) The new memetic algorithm HEAD for graph coloring: an easy way for managing diversity. In: Ochoa G, Chicano F (eds) Evol Comput Comb Optim, vol 9026. Lecture notes in computer science. Springer, pp 173–183

  47. Newman MEJ (2006) Finding community structure in networks using the eigenvectors of matrices. Phys Rev E 74(036104):1–19

    MathSciNet  Google Scholar 

  48. Porumbel DC, Hao JK, Kuntz P (2010) A search space “cartography” for guiding graph coloring heuristics. Comput Oper Res, 37(4):769–778

  49. Porumbel DC, Hao JK, Kuntz P (2013) Informed reactive tabu search for graph coloring. Asia-Pacific J Oper Res 30(04):1350010

    MathSciNet  MATH  Article  Google Scholar 

  50. Ruiz R, Stützle T (2007) A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem. Eur J Oper Res 177(3):2033-2049

    MATH  Article  Google Scholar 

  51. Salwinski L, Miller CS, Smith AJ, Pettit FK, Bowie JU, Eisenberg D (2004) The database of interacting proteins: 2004 update. Nucl Acids Res 32(suppl 1):D449–D451

    Article  Google Scholar 

  52. Sawai H, Kizu S (1998) Parameter-free genetic algorithm inspired by “disparity theory of evolution” . In: International conference on parallel problem solving from nature. Springer, Berlin, pp 702–711

  53. Sevinc E, Dokeroglu T (2020) A novel parallel local search algorithm for the maximum vertex weight clique problem in large graphs. Soft Comput 24(5):3551–3567

    Article  Google Scholar 

  54. Steger-Jensen K, Hvolby HH, Nielsen P, Nielsen I (2011) Advanced planning and scheduling technology. Prod Plann Control 22(8):800–808

    Article  Google Scholar 

  55. Sun G, Lan Y, Zhao R (2019) Differential evolution with gaussian mutation and dynamic parameter adjustment. Soft Comput 23(5):1615–1642

    Article  Google Scholar 

  56. Sun J, Garibaldi JM, Hodgman C (2012) Parameter estimation using metaheuristics in systems biology: a comprehensive review. IEEE/ACM Trans Comput Biol Bioinform (TCBB) 9(1):185–202

    Article  Google Scholar 

  57. Sun W, Hao JK, Lai X, Wu Q (2018) Adaptive feasible and infeasible tabu search for weighted vertex coloring. Inf Sci 466:203–219

    MathSciNet  MATH  Article  Google Scholar 

  58. Titiloye O, Crispin A (2011) Quantum annealing of the graph coloring problem. Discr Optim 8(2):376–384

    MathSciNet  MATH  Article  Google Scholar 

  59. Titiloye O, Crispin A (2012) Parameter tuning patterns for random graph coloring with quantum annealing. PLoS ONE 7(11):e50060

    Article  Google Scholar 

  60. Watts DJ, Strogatz SH (1998) Collective dynamics of “small-world” networks. Nature 393(6684):440–442

  61. Wang W, Hao JK, Wu Q (2018) Tabu search with feasible and infeasible searches for equitable coloring. Eng Appl Artif Intell 71:1–14

  62. Yang T, Zhang R, Cheng X, Yang L (2017) Graph coloring based resource sharing (GCRS) scheme for D2D communications underlaying full-duplex cellular networks. IEEE Trans Veh Technol 66(8):7506–7517

    Article  Google Scholar 

  63. Zachary WW (1977) An information flow model for conflict and fission in small groups. J Anthropol Res 33:452–473

    Article  Google Scholar 

  64. Zhou Y, Duval B, Hao JK (2018) Improving probability learning based local search for graph coloring. Appl Soft Comput 65:542–553

    Article  Google Scholar 

  65. Zufferey N, Amstutz P, Giaccari P (2008) Graph colouring approaches for a satellite range scheduling problem. J Sched 11(4):263–277

    MathSciNet  MATH  Article  Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to David Chalupa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Code availability

The source code is available upon request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chalupa, D., Nielsen, P. Parameter-free and cooperative local search algorithms for graph colouring. Soft Comput 25, 15035–15050 (2021). https://doi.org/10.1007/s00500-021-06347-3

Download citation

Keywords

  • Graph colouring
  • Local search
  • Parameter-free algorithms
  • Cooperative algorithms
  • Metaheuristics